
1

A Robust 3D-2D Interactive Tool for Scene
Segmentation and Annotation

Duc Thanh Nguyen, Binh-Son Hua∗, Lap-Fai Yu, Member, IEEE, and Sai-Kit Yeung, Member, IEEE

Abstract—Recent advances of 3D acquisition devices have enabled large-scale acquisition of 3D scene data. Such data, if completely

and well annotated, can serve as useful ingredients for a wide spectrum of computer vision and graphics works such as data-driven

modeling and scene understanding, object detection and recognition. However, annotating a vast amount of 3D scene data remains

challenging due to the lack of an effective tool and/or the complexity of 3D scenes (e.g. clutter, varying illumination conditions). This

paper aims to build a robust annotation tool that effectively and conveniently enables the segmentation and annotation of massive

3D data. Our tool works by coupling 2D and 3D information via an interactive framework, through which users can provide high-level

semantic annotation for objects. We have experimented our tool and found that a typical indoor scene could be well segmented and

annotated in less than 30 minutes by using the tool, as opposed to a few hours if done manually. Along with the tool, we created a

dataset of over a hundred 3D scenes associated with complete annotations using our tool. Both the tool and dataset are available at

http://scenenn.net.

Index Terms—Annotation tool, semantic annotation, 3D segmentation, 3D reconstruction, 2D-3D interactive framework

✦

1 INTRODUCTION

H IGH-quality 3D scene data has become increasingly

available thanks to the growing popularity of consumer-

grade depth sensors and tremendous progress in 3D scene

reconstruction research [1], [2], [3], [4], [5], [6]. Such 3D

data, if fully and well annotated, would be useful for powering

different computer vision and graphics tasks such as scene

understanding [7], [8], object detection and recognition [9],

and functionality reasoning in 3D space [10].

Scene segmentation and annotation refer to separating an

input scene into meaningful objects. For example, the scene

in Fig. 1 can be segmented and annotated into chairs, table,

etc. Literature has shown the crucial role of 2D annotation

tools (e.g. [11]) and 2D image datasets (e.g. [12], [13], [14])

various tasks like semantic segmentation, object detection and

recognition [15], [16]. This inspires us for such tasks on 3D

scene data. However, segmentation and annotation of 3D scenes

require much more effort due to the large scale of the 3D data

(e.g. there are millions of 3D points in a reconstructed scene).

Development of a robust tool to facilitate the segmentation and

annotation of 3D scenes thus is a demand and also the aim of

this work. To this end, we make the following contributions:

• We propose an interactive framework that effectively cou-

ples the geometric and appearance information from multi-

view RGB data. The framework is able to automatically

perform 3D scene segmentation.

∗Co-first author

• Duc Thanh Nguyen is with the School of Information Technology, Deakin

University, Australia.

E-mails: duc.nguyen@deakin.edu.au

• Lap-Fai Yu is with the University of Massachusetts Boston.

E-mail: craigyu@cs.umb.edu

• Binh-Son Hua and Sai-Kit Yeung are with Information Systems Technology

and Design Pillar, Singapore University of Technology and Design.

E-mail: {binhson hua,saikit}@sutd.edu.sg

• Our tool is facilitated with a 2D segmentation algorithm

based on 3D segmentation.

• We develop assistive user-interactive operations that allow

users to flexibly manipulate scenes and objects in both

3D and 2D. Users co-operate with the tool by refining

the segmentation and providing semantic annotation.

• To further assist users in annotation, we propose an

object search algorithm which automatically segments

and annotates repetitive objects defined by users.

• We create a dataset including over a hundred scenes. All

the scenes are fully segmented and annotated using our

tool. This dataset will serve as a benchmark for future

works in 3D computer vision and graphics.

Compared with existing works on RGB-D segmentation and

annotation (e.g. [17], [18]), our tool holds several advantages.

First, segmentation and annotation are centralized in 3D and

thus free users from manipulating thousands of images. Second,

the tool can adapt with either RGB-D images or scene triangular

meshes as the input. This enables the tool to handle meshes

reconstructed from either RGB-D images [19] or structure-

from-motion [20] in a unified framework.

We note that interactive annotation has also been exploited

in a few concurrent works, e.g. SemanticPaint in [21] and

Semantic Paintbrush in [22]. Compared with those systems,

our annotation tool offers a wider range of interactions. In

addition, the tool also provides more assistive functionalities,

e.g. 3D object search, 2D segmentation.

2 RELATED WORK

RGB-D Segmentation. A common approach for scene seg-

mentation is to perform the segmentation on RGB/D images.

Examples of this approach can be found in [17], [18], [23].

The spatial relationships between objects can also be exploited

to infer the scene labels. For example, Jia et al. [24] used

http://scenenn.net

2

Fig. 1. A reconstructed 3D scene segmented and annotated using our tool.

object layout rules for scene labeling. The spatial relationship

between objects was modeled by a conditional random field

(CRF) in [25], [26] and directed graph in [27].

In general, the above methods segment RGB/D images

captured from single viewpoints of a 3D scene individually

while the segmentation of an individual image may not be

reliable and incomplete. Compared with those methods, our

tool can achieve more accurate and complete segmentation

results with the 3D models of the scene and its objects.

From 2D to 3D. Labeling a 3D scene can be performed by

back-projecting the labels obtained on the 2D images of that

scene to 3D space. For example, Wang et al. [28] used the

labels provided in ImageNet [12] to infer 3D labels. In [3],

2D labels were obtained by drawing polygons.

Labeling directly on images is time consuming. Typically, a

few thousands of images need to be handled. It is possible

to perform matching among the images to propagate the

annotations from one image to another, e.g. [3], but this

process is not reliable.

3D Object Templates. 3D object templates can be used to

segment 3D scenes. The templates can be organized in holistic

models, e.g., [29], [30], [31], [32], or part-based models, e.g.

[33]. The segmentation can be performed on 3D point clouds,

e.g. [29], [31], [33], or 3D patches, e.g. [32], [30], [34].

Generally speaking, the above techniques require the

template models to be known in advance. They do not fit well

our interactive system in which the templates can be provided

on the fly by users. In our tool, we propose to use shape

matching to help users in the segmentation and annotation

task. Shape matching does not require off-line training and is

proved to perform efficiently in practice [35].

Online Scene Understanding. Recently, there are methods that

combine 3D reconstruction and annotation to achieve online

scene understanding. For example, Tateno et al. [36] proposed

to segment depth images and fuse the segmentations incremen-

tally into a SLAM framework. SemanticPaint developed in

[21] allowed users annotate a scene by touching objects. The

SemanticPaint was extended to the Semantic Paintbrush [22]

for outdoor scenes annotation by exploiting the farther range

of a stereo rig.

In both [21] and [22], objects of interest were identified by

touching and the corresponding object classes were modeled by

CRFs. These methods used voxel-based TSDF representation

rather than triangle mesh (as our approach) to represent objects

and implicitly assumed that all objects of the same class have

similar appearance (e.g. color). Since the CRFs were built upon

the reconstructed data, there also assumed the reconstructed

data was good enough. However, reconstructed scenes are often

incomplete. To deal with this issue, we describe 3D objects

using a shape descriptor which is robust to shape variation and

occlusion. Experimental results show that our approach works

well under noisy data (e.g. broken mesh) and robustly deal

with shape deformation while being efficient for practical use.

3 SYSTEM OVERVIEW

Fig. 2 shows the workflow of our tool. The tool includes four

main stages: scene reconstruction, automatic 3D segmentation,

interactive refinement and annotation, and 2D segmentation.

In the first stage (section 4), the system takes a sequence

of RGB-D frames and reconstructs a triangular mesh, called

3D scene mesh. We compute and cache the correspondences

between the 3D vertices in the reconstructed scene and the

2D pixels on all input frames. This allows seamless switching

between segmentation in 3D and 2D in later steps.

In the second stage (section 5), the 3D scene mesh is

automatically segmented. We start by clustering the mesh

vertices into supervertices (section 5.1). Next, we group the

supervertices into regions (section 5.2). We also cache the

results of both steps for later use.

The third stage (section 6) is designed for users to interact

with the system. We design three segmentation refinement

operations: merge, extract, and split. After refinement, users

can make semantic annotation for objects in the scene.

To further assist users in segmentation and annotation of

repetitive objects, we propose an algorithm to automatically

search for repetitive objects specified by a template (section 7).

We extend the well-known 2D shape context [35] to 3D space

and apply shape matching to implement this functionality.

The fourth stage of the framework (section 8) is designed

for segmentation of 2D frames. In this stage, we devise an

algorithm based on contour matching that uses the segmentation

results in 3D to initialize the 2D segmentation.

3

Fig. 2. Overview of our annotation tool.

4 SCENE RECONSTRUCTION

4.1 Geometry reconstruction

Several techniques have been developed for 3D scene re-

construction. For example, KinectFusion [37] applied frame-

to-model alignment to fuse depth information and visualize

3D scenes in real time. However, KinectFusion tends to

cause drift where depth maps are not accurately aligned

due to accumulation of registration errors over time. Several

attempts have been made to avoid drift and led to significant

improvements in high-quality 3D reconstruction. For example,

Xiao et al. [3] added object constraints to correct misaligned

reconstructions. In [38], [4], [39], the input frames were

split into small chunks, each of which could be accurately

reconstructed. An optimization was then performed to register

all the chunks into the same coordinate frame. In many systems,

e.g. [40], re-visiting places are used to trigger a loop closure

constraint to enforce global consistency of camera poses. In

[41], loop closure was enabled by splitting the scene into

submaps. The information from every single image frame was

accumulated into the submaps and the position and orientation

of the submaps were then adjusted accordingly.

In our system, we adopt the method in [4], [19] to calculate

camera poses. The triangular mesh then can be extracted using

the marching cubes algorithm [42]. The normal of each mesh

vertex is given by the area-weighted average over the normals of

its neighbor surfaces. We further smooth the resulting normals

using a bilateral filter.

4.2 3D-2D Correspondence

Given the reconstructed 3D scene, we align the whole sequence

of 2D frames with the 3D scene using the corresponding camera

poses obtained from section 4.1. For each 3D vertex, its normal

is computed on the 3D mesh and color is estimated as the

median of the color of the corresponding pixels on 2D frames.

5 SEGMENTATION IN 3D

After the reconstruction, a scene mesh typically consists of

millions of vertices. In this stage, those vertices are segmented

into much fewer regions. Directly segmenting millions of

vertices is computationally expensive and requires a lot of

computer resources. To avoid this, we perform a two-level

segmentation. At the first level, we divide the reconstructed

scene into a number of so-called supervertices by applying a

purely geometry-based segmentation method. At the second

level, we merge the supervertices into larger regions by

considering both surface normals and colors.

5.1 Graph-based Segmentation

We extend the efficient graph-based image segmentation

algorithm of Felzenszwalb et al. [43] to 3D space. We have

also tried with normalized cuts [44] and found that graph-based

segmentation worked more stably and faster. In addition, graph-

based segmentation is often selected for scene segmentation,

e.g. in [45]. However, we note that other existing superpixel

methods [46] could also be considered for this task.

The graph-based segmentation algorithm operates as follows.

Given the scene mesh, a graph is defined in which each node in

the graph corresponds to a vertex in the mesh. Two nodes in the

graph are linked by an edge if their two corresponding vertices

in the mesh are the vertices of a triangle. Let V = {vi} be the

set of vertices in the mesh. The edge connecting two vertices

vi and vj is weighted as

w(vi,vj) = 1− ni
⊤nj , (1)

where ni and nj are the unit normals of vi and vj respectively.

The graph-based segmenter in [43] employs a number of

parameters including a smoothing factor used for noise filtering

(normals in our case), a threshold representing the contrast

between adjacent regions, and the minimum size of segmented

regions. In our implementation, those parameters were set to

0.5, 500, and 20 respectively. However, we also make those

parameters available to users for customization.

The graph-based segmentation algorithm results in a set

of supervertices S = {si}. Each supervertex is a group

of geometrically homogeneous vertices with similar surface

normals. The bottom left image in Fig. 2 shows an example

of the supervertices. More examples can be found in Fig. 9.

5.2 MRF-based Segmentation

The graph-based segmentation often produces a large num-

ber (e.g. few thousand) supervertices, which could require

considerable effort for annotation. To reduce this burden, the

4

supervertices are clustered into regions via optimizing an MRF

model. In particular, for each supervertex si ∈ S, the color

and normal of si, denoted as c̄i and n̄i, are computed as the

means of the color values and normals of all vertices v ∈ si.
Each supervertex si ∈ S is then represented by a node oi in

an MRF. Two nodes oi and oj are directly connected if si and

sj share some common boundary (i.e. si and sj are adjacent

supervertices). Letting li be the label of oi, the unary potentials

are defined as

ψ1(oi, li) = − log Gci (c̄i,µ
c
li
,Σc

li
)− log Gni (n̄i,µ

n
li
,Σn

li
), (2)

where Gcli and Gnli are the Gaussians of the color values and

normals of the label class of li, and µ
c
li
/µn

li
and Σc

li
/Σn

li
are

the mean and covariance matrix of Gcli/G
n
li

. The means and

covariance matrices are computed based on the current labels

and updated accordingly during the labeling process.

For the pairwise potentials, we use the Potts model [47]

ψ2(li, lj) =

{

−1, if li = lj

1, otherwise.
(3)

Let L = {l1, l2, ..., l|S|} be a labeling of the supervertices.

The optimal labeling L∗ is determined by

L∗ = argmin
L

[

∑

i

ψ1(oi, li) + γ
∑

i,j

ψ2(li, lj)

]

(4)

where γ is weight factor that is set to 0.5 in our implementation.

The optimization problem in (4) is solved using the method

in [47]. In our implementation, the number of labels was

initialized to the number of supervertices; each supervertex

was assigned to a different label. Fig. 2 (bottom) shows the

result of the MRF-based segmentation. More results of this

step are presented in Fig. 9.

6 SEGMENTATION REFINEMENT AND ANNOTA-
TION IN 3D

The automatic segmentation stage can produce over- and under-

segmented regions. To resolve these issues, we design three

operations: merge, extract, and split.

Merge. This operation is used to resolve over-segmentation.

In particular, users identify over-segmented regions that need

to be grouped by stroking on them. The merge operation is

illustrated in the first row of Fig. 3.

Extract. This operation is designed to handle under-

segmentation. In particular, for an under-segmented region,

the supervertices composing that region can be retrieved. Users

can select a few of those supervertices and use the merge

operation to group them to create a new region. The second

row of Fig. 3 shows the extract operation.

Split. In a few rare cases, the MRF-based segmentation

may perform differently on different regions. This is probably

because of the variation of the shape and appearance of objects.

For example, a scene may have chairs appearing in a unique

color and other chairs each of which composes multiple colors.

Therefore, a unique setting of the parameters in the MRF-based

segmentation may not adapt to all objects.

To address this issue, we design a split operation enabling

user-guided MRF-based segmentation. Specifically, users first

Merge

Extract

Split

Fig. 3. Segmentation refinement operations. The leftmost and
rightmost images illustrate the segmentation before and after
applying operations. The center images illustrate the strokes. In
the second row, the cyan region (in the left) is under-segmented
and refined using Extract operation.

select an under-segmented region by stroking on that region.

The MRF-based segmentation is then invoked on the selected

region with a small value of γ (see (4)) to generate more

grained regions. We then enforce a constraint such that the

starting and ending point of the stroke belong to two different

labels. For example, assume that li and lj are the labels of

two supervertices that respectively contain the starting and

ending point of the stroke. To bias the objective function in (4),

ψ2(li, lj) in (3) is set to −1 when li 6= lj , and to a large value

(e.g. 109) otherwise. By doing so, the optimization in (4) would

favor the case li 6= lj . In other words, the supervertices at the

starting and ending point are driven to separate regions. Note

that the MRF-based segmentation is only re-executed on the

selected region. Therefore, the split operation is fast and does

not hinder user interaction. In particular, we have empirically

found that the split operation takes much less than a second to

process a single segment. We also note that the split operation

takes into account the regions users select to re-run the MRF

based optimization (with some implied prior) and hence would

be less cumbersome than manually selecting supervertices as

in the extract operation. The third row of Fig. 3 illustrates the

split operation.

As shown in our user study (see Appendix), users mostly

perform merge and extract operations. Split operation is only

used when extract operation is not able to handle severe under-

segmentations but such cases are not common in practice.

When all the 3D segmented regions have been refined, users

can annotate the regions by providing the object type. Fig. 4

shows an example of using our tool for annotation.

7 OBJECT SEARCH

There may exist multiple instances of an object class in a

scene, e.g. the nine chairs in Fig. 5. To support labeling and

5

Fig. 4. Scene annotation using our tool. From left to right: 3D view, annotated labels, and 2D view.

(a) (b)

(c) (d)

Fig. 5. (a) 3D shape context descriptor. Left: the shape context of a point (in red) can be represented as the spatial distribution in
a sphere centered at that point. Right: a 2D view of the sphere. (b) The template (a chair) enclosed by a red box. Each remaining
chair consists of multiple regions. (c) The down-sampled point cloud has 20,000 points. (d) Result of the object search: matching
objects are found and enclosed by green boxes.

annotating repetitive objects, users can define a template by

selecting an existing region or multiple regions composing

the template. Those regions are the results of the MRF-

based segmentation or user refinement. Given the user-defined

template, our system automatically searches for objects that

are similar to the template. Note that each repetitive object

may be composed of multiple regions. For example, each chair

in Fig. 5(a) consists of different regions such as the back,

seat, legs. Once a group of regions is found to match well

with the template, the regions are merged into a single object

and recommended to users for verification. This is because the

object search operation may propose inappropriate objects. Note

that the object search operation is applied only to unlabeled

regions. In our implementation, we extend the 2D shape context

proposed in [35] to describe 3D objects (section 7.1). Matching

objects with the template is performed via comparing shape

context descriptors (section 7.2). The object search is then

built upon the sliding-window object detection approach [48]

(section 7.3).

7.1 Shape Context

Shape context was proposed by Belongie et al. [35] as a

2D shape descriptor and is well-known for many desirable

properties such as being discriminative and robust to noise,

shape deformation and transformation, and partial occlusions.

Those properties fit our need well for several reasons. First,

reconstructed scene meshes could be incomplete and contain

noisy surfaces. Second, occlusions may also appear due to the

lack of sufficient images completely covering objects. Third,

the tool is expected to adapt to the variation of object shapes,

e.g. chairs with and without arms.

In our work, a 3D object is represented by a set V of

vertices obtained from the 3D reconstruction step. For each

vertex vi ∈ V , the shape context of vi is denoted as s(vi)
and represented by the histogram of the relative locations

of other vertices vj , j 6= i, to vi. Let uij = vi − vj . The

relative location of a vertex vj ∈ V to vi is encoded by the

length ‖uij‖ and the spherical coordinate (θ, φ)ij of uij . In

our implementation, the lengths ‖uij‖ were quantized into

6

5 levels. To make the shape context s(vi) more sensitive to

local deformations, ‖uij‖ were quantized in a log-scale space.

The spherical angles (θ, φ)ij were quantized uniformly into 6

discrete values. Fig. 5(a) illustrates the 3D shape context.

The shape context descriptor is endowed with scale invari-

ance by normalizing ‖uij‖ by the mean of the lengths of all

vectors. To make the shape context rotation invariant, Kortgen

et al. [49] computed the spherical coordinates (θ, φ)ij relative

to the eigenvectors of the covariance matrix of all vertices.

However, the eigenvectors may not be computed reliably for

shapes having no dominant orientations, e.g. rounded objects.

In addition, the eigenvectors are only informative when the

shape is complete while our scene meshes may be incomplete.

To overcome this issue, we establish a local coordinate frame

at each vertex on a shape using its normal and tangent vector.

The tangent vector of a vertex vi is the one connecting vi to

the centroid of the shape. We found that this approach worked

more reliably.

Since a reconstructed scene often contains millions of

vertices, prior to applying the object search, we uniformly

sample 20, 000 points from the scene, which results in objects

of 100− 200 vertices.

7.2 Shape Matching

Comparing (matching) two given shapes V and Y is to

maximize the correspondences between pairs of vertices on

these two shapes, i.e. minimizing the deformation of the two

shapes in a point-wise fashion. We define the deformation

cost between two vertices vi ∈ V and yj ∈ Y to be the

χ2(s(vi), s(yj)) distance between the two corresponding shape

context descriptors extracted at vi and yj as follow,

χ2(s(vi), s(yj)) =
1

2

dim(s(vi))
∑

b=1

(s(vi)[b]− s(yj)[b])
2

s(vi)[b] + s(yj)[b]
(5)

where dim(s(vi)) is the dimension (i.e. the number of bins)

of s(vi), and s(vi)[b] is the value of s(vi) at the b-th bin.

Given the deformation cost of every pair of vertices on

two shapes V and Y , shape matching can be solved using the

shortest augmenting path algorithm [50]. To make the matching

algorithm adaptive to shapes with different number of vertices,

“dummy” vertices are added. This enables the matching method

to be robust to noisy data and partial occlusions. Formally,

the deformation cost C(V,Y) between two shapes V and Y is

computed as,

C(V,Y) =
∑

vi∈V̂

χ2(s(vi), s(π(vi))) (6)

where V̂ is identical to V or augmented from V by adding

dummy vertices and π(vi) ∈ Ŷ is the matching vertex of vi

determined by using [50].

To further improve the matching, we also consider how well

the two shapes correspond. In particular, we first align V to

Y using a rigid transformation. This rigid transformation is

represented by a 4×4 matrix and estimated using the RANSAC

algorithm that randomly picks three pairs of correspondences

and determine the rotation and translation [51]. We then

compute an alignment error,

E(V,Y) = min

{

√

√

√

√

1

|V|

|V|
∑

i=1

ǫ
(V)
i ,

√

√

√

√

1

|Y|

|Y|
∑

i=1

ǫ
(Y)
i

}

(7)

where

ǫ
(V)
i =

{

‖π(vi)− T ∗ vi‖
2 if π(vi) exists for vi ∈ V

∆2 otherwise

(8)

and, similarly for ǫ
(Y)
i , where T is the rigid transformation

matrix and ∆ is a large value used to penalize misalignments.

A match is confirmed if: (i) C(V,Y) < τs and (ii)

E(V,Y) < τa where τs and τa are thresholds. In our

experiments, we set ∆ = 2 (meters), τs = 0.7, τa = 0.4.

We found that the object search method was not too sensitive

to parameter settings, and that these settings achieved the best

performance.

7.3 Searching

Object search can be performed based on the sliding-window

approach [48]. Specifically, we take the 3D bounding box of

the template and use it as the window to scan a 3D scene.

At each location in the scene, all regions that intersect the

window are considered for their possibility to be part of a

matching object. However, it would be intractable to consider

every possible combination of all regions. To deal with this

issue, we propose a greedy algorithm that operates iteratively

by adding and removing regions.

The general idea is as follows. Let R be the set of regions

that intersect the window W , i.e. the 3D bounding box of the

template. For a region r ∈ W\R, we verify whether the object

made by R ∪ {r} could be more similar to the user-defined

template O in comparison with R. Similarly, for every region

r ∈ R we also verify the object made by R\{r}. These adding

and removing steps are performed interchangeably in a small

number of iterations until the best matching result (i.e. a group

of regions) is found. This procedure is called grow-shrink and

described in Algorithm 1.

In our implementation, the spatial strides on the x−, y−,

and z− direction of the window W were set to the size of

W . The number of iterations in Algorithm 1 was set to 10,

which resulted in satisfactory accuracy and efficiency (see

Section 9.3).

Since a region may be contained in more than one window,

it may be verified multiple times in multiple groups of regions.

To avoid this, if an object candidate is found in a window, its

regions will not be considered in any other objects and any

other windows. Fig. 5 illustrates the robustness of the object

search in localizing repetitive objects under severe conditions

(e.g. objects with incomplete shape).

The search procedure may miss some objects. To handle

such cases, we design an operation called guided merge. In

particular, after defining the template, users simply select one of

the regions of a target object that is missed by the object search.

The grow-shrink procedure is then applied on the selected

region to seek a better match with the template. Fig. 6 shows

an example of the guided merge operation.

7

function GrowShrink (R,W,O)
Input :R: set of regions to examine,

W: window,

O: user-defined template

Output :A: best matching object

begin
A ← R
for i← 1 to iterations do

// grow

M←A
for r ∈ W \M do

if C(M∪ {r},O) < C(A,O) and

E(M∪ {r},O) < τa then
A ←M∪ {r}

end

end

// shrink

M←A
for r ∈M do

if C(M\ {r},O) < C(A,O) and

E(M\ {r},O) < τa then
A ←M\ {r}

end

end

end

return A
end

Algorithm 1: Grow-shrink procedure. C and E are the

matching cost and alignment error defined in (6) and (7).

(a) (b)

Fig. 6. Suppose that the right chair cannot be detected by the
object search. (a) Input: a template specified by a stroke on
its regions and an initial region (marked by the arrow) of the
target object. (b) Output: labels of the target (the right chair) are
merged automatically by applying the grow-shrink procedure.

8 SEGMENTATION IN 2D

Segmentation in 2D can be done by projecting regions in 3D

space into 2D frames. However, the projected regions may

not align well with the true objects in 2D frames (see Fig. 7).

There are several reasons for this issue. For example, the depth

and color images used to reconstruct a scene might not be

exactly aligned at object boundaries, or the camera intrinsics

might be from factory settings and not well calibrated. We note

that manual calibration is not easy for novice users to perform.

Moreover, auto calibration might not work reliably especially

when scene features are lacking and camera registration during

reconstruction exhibits drift.

To overcome this issue, we propose an alignment algorithm

which aims to fit the boundaries of projected regions to true

boundaries in 2D frames. The true boundaries in a 2D frame

can be extracted using some edge detector (e.g. the Canny edge

detector [52]). Let E = {ej} denote the set of edge points

on the edge map of a 2D frame. Let U = {ui} be the set of

contour points of a projected object in that frame. U is then

ordered using the Moore neighbor tracing algorithm [53]. The

ordering step is used to express the contour alignment problem

in a form to which dynamic programming can be applied for

efficient implementation.

At each contour point ui, we consider a 21×21-pixel window

centered at ui (in relative to a 640 × 480-pixel image). We

then extract the histogram hui
of the orientations of vectors

(ui, uk), uk ∈ U in the window. The orientations are uniformly

quantized into 16 bins. We also perform this operation for

edge points ej ∈ E . The dissimilarity between the two local

shapes at a contour point ui and edge point ej is computed as

χ2(hui
, hej) (similarly to (5)).

We also consider the continuity and smoothness of contours.

In particular, the continuity between two adjacent points ui
and ui−1 is defined as ‖ui − ui−1‖. The smoothness of a

fragment including three consecutive points ui, ui−1, ui−2 is

computed as cos(ui − ui−1, ui−2 − ui−1) where ui − ui−1

and ui−2−ui−1 denote the vectors connecting ui−1 to ui and

connecting ui−1 to ui−2 respectively, and cos(·, ·) is the cosine

of the angle formed by these two vectors.

Alignment of U to E is achieved by identifying a mapping

function f : U → E that maps a contour point ui ∈ U to an

edge point ej ∈ E so as to,

minimize

[|U |
∑

i=1

χ2(hui
, hf(ui))

+ κ1

|U |
∑

i=2

‖f(ui)− f(ui−1)‖

+ κ2

|U |
∑

i=3

cos(f(ui)− f(ui−1), f(ui−2)− f(ui−1))

]

(9)

The optimization problem in (9) can be considered as

the bipartite graph matching problem [50]. However, since

U is ordered, this optimization can be solved efficiently

using dynamic programming [54]. In particular, denoting

mi,j = χ2(hui
, hej), fi = f(ui), fi,j = f(ui) − f(uj), the

objective function in (9) can be rewritten as,

Fi =



















minj∈E{Fi−1 +mi,j + κ1‖fi,i−1‖

+κ2 cos(fi,i−1, fi−2,i−1)}, if i > 2

minj∈E{Fi−1 +mi,j + κ1‖fi,i−1‖}, if i = 2

minj∈E{mi,j}, if i = 1

(10)

where κ1 and κ2 are user parameters. Empirically, we set

κ1 = 0.1 and κ2 = 3.0 in all of our experiments.

To save the computational cost of (10), for each contour point

ui, we consider only its k nearest edge points whose distance

to ui is less than a distance δ set to 10% of the maximum

of the image dimension, e.g., δ = 48 for a 640 × 480-pixel

8

(a) (b) (c)

Fig. 7. Segmentation of a 2D frame. (a) Segmentation by projecting objects from 3D into 2D. Projected regions are overlaid on the
RGB frame. (b) Contours of projected regions (in red) and Canny’s edges (in black). (c) The correspondences between contour
points and edge points (green lines) obtained from the alignment algorithm. Note that only a few sampled points on the contours
are selected for illustration.

image. The number of nearest edge points (i.e. k) was set

to 30. Fig. 7(c) shows an example of contour alignment by

optimizing (10) using dynamic programming.

We have verified the contribution of the continuity and

smoothness in Fig. 8. The results show that, when all the cues

are taken into account, the contours are mostly well aligned

with the true object boundaries. It is noticeable that the seat

of the green chair is not correctly recovered. We have found

that this is because the Canny detector missed important edges

on the boundaries of the chair. Recently, new edge detectors

(e.g. [55]) have been shown to work robustly under severe

illumination conditions and in the face of complex texture

changes. These edge detectors could be used to enhance the

alignment algorithm.

9 EXPERIMENTS

9.1 Dataset

We created a dataset consisting of over 100 scenes. The

dataset includes six scenes from publicly available datasets:

the copyroom and lounge from the Stanford dataset [38], the

hotel and dorm from the SUN3D [3], and the kitchen and office

sequences from the Microsoft dataset [56]. The Stanford and

SUN3D dataset also provide registered RGB and depth image

pairs. These datasets also include the camera pose data.

In addition to existing scenes, we collected 100 scenes

using Asus Xtion and Microsoft Kinect v2. Our scenes were

captured from the campus of the University of Massachusetts

Boston and the Singapore University of Technology and Design.

These scenes were captured from various locations such as

lecturer rooms, theaters, university hall, library, computer labs,

dormitory, etc. There were about 1,600 object instances of 20

object categories. The objects vary in shape and color. Their

sizes also vary significantly; some objects are quite small,

e.g. glasses (< 10cm), while others are very large, e.g. beds

(about 2m), walls (about 5m). All the scenes and objects were

fully segmented and annotated using our tool. The camera

pose information is also included. The dataset is available at

http://scenenn.net. Fig. 9 shows several of our collected scenes.

9.2 Evaluation of 3D Segmentation

We evaluated the impact of the graph-based and MRF-based

segmentation on our dataset. We considered the annotated

results obtained using our tool as the ground-truth. To measure

the segmentation performance, we extended the object-level

consistency error (OCE), the image segmentation evaluation

metric proposed in [57] to 3D vertices. Essentially, the OCE

reflects the coincidence of pixels/vertices of segmented regions

and ground-truth regions. As indicated in [57], compared with

other segmentation evaluation metrics (e.g. the global and local

consistency error in [58]), the OCE considers both over- and

under-segmentation errors in a single measure. In addition,

OCE can quantify the accuracy of multi-object segmentation

and thus fits our evaluation purpose well.

Table 1 summarizes the OCE of the graph-based and MRF-

based segmentation. As shown in the table, compared with

the graph-based segmentation, the segmentation accuracy is

significantly improved by the MRF-based segmentation. It is

also noticeable that the number of supervertices and regions

yielded by the segmentation process is much smaller than the

number of 3D vertices that were passed in, making them

significantly more convenient for the users to work with.

The OCE values presented in Table 1 show that automatic

segmentation is still not approaching the quality achieved by

human beings. Thus, user interactions are necessary. This is

for two reasons: first, both the graph-based and MRF-based

segmentation aim to segment a 3D scene into homogenous

regions rather than semantically-meaningful objects; second,

semantic segmentation is user-dependent and subjective [58].

After user interaction, the number of final labels is typically

less than a hundred. The number of objects is around 10 to

20 in most of the cases. Note that the numbers of final labels

and annotated objects are not identical. This is because there

could have been labels whose semantics is not well defined, e.g.

miscellaneous items on a table or some small labels appearing

as noise in the 3D reconstruction.

We also report the time required for the segmentation and

user interactions with the tool in Table 1. As shown in the

table, with the assistance of the tool, a complex 3D scene

(with millions of vertices) could be completely segmented and

annotated in less than 30 minutes, as opposed to approximately

http://scenenn.net

9

Segmentation by projecting 3D objects into a 2D frame

Using the local shape only (i.e. κ1 = κ2 = 0)

Using the local shape and continuity

Using the local shape and smoothness

Using the local shape, continuity, and smoothness

Fig. 8. Illustration of 2D segmentation. First column: segmentation result obtained by projection of 3D regions and overlaid on RGB
images. Remaining columns: close-ups of four regions marked in the segmentation result in the first column.

10

Fig. 9. Results of our captured scenes. From left to right: the result of graph-based segmentation, MRF-based segmentation, and
final segmentation and annotation made by user interaction. Please refer to our supplemental document for the results of other
scenes.

11

TABLE 1

Comparison of the graph-based segmentation and MRF-based segmentation. For our captured scenes, the statistical data is the

average numbers calculated over all the scenes. Note that for user refined results, the numbers of objects annotated are fewer

than the numbers of labels (i.e. segments). This is because the annotation was done only for objects that are common in practice.

Graph-based MRF-based User refined Interactive time

Scene #Vertices #Supervertices OCE Time #Regions OCE Time #Labels #Objects (minutes)
(seconds) (seconds)

copyroom 1,309,421 1,996 0.92 1.0 347 0.73 10.9 157 15 19
lounge 1,597,553 2,554 0.97 1.1 506 0.93 7.3 53 12 16
hotel 3,572,776 13,839 0.98 2.7 1433 0.88 17.8 96 21 27
dorm 1,823,483 3,276 0.97 1.2 363 0.78 7.8 75 10 15
kitchen 2,557,593 4,640 0.97 1.8 470 0.85 12.2 75 24 23
office 2,349,679 4,026 0.97 1.7 422 0.84 10.9 69 19 24

Our scenes 1,450,748 2,498 0.93 1.4 481 0.77 12.1 179 19 30

SemanticPaint Ours

SceneNN/016

SceneNN/065

SceneNN/206

Wall

Floor

Bed

Table

Chair

Pillow

Sofa

Lamp

Sink

Props

Structure

Cabinet

Bag

Counter

Window

Curtain

Fig. 10. Comparison of SemanticPaint [21] and our system.

a few hours to be done manually. Note that the interactive time

is subject to a user’s experience. Several results of the tool are

shown in Fig. 9. We also compare our overall system with the

public version of SemanticPaint [21] in Fig. 10. Note that this

is only a qualitative comparison since different reconstruction

methods were used in two systems. Although SemanticPaint

offers real-time performance, it suffers from high frequency

noise due to the segment propagation mechanism. By contrast,

our system shows smoother segmentation results because it is

based on supervertices.

9.3 Evaluation of Object Search

To evaluate the object search, we collected a set of 45 objects

from our dataset. Those objects were selected so that they are

semantically-meaningful and their shapes are discriminative.

For example, drawers of cabinets were not selected since they

were present in flat surfaces which could be easily found in

many structures, e.g. walls, pictures, etc. For each scene and

each object class (e.g. chair), each object instance in the class

was used as the template while the object search was applied

to find the remaining objects of the same class.

We used the intersection over union (IoU) metric [13] to

determine true detections and false alarms. However, instead

of computing the IoU on object bounding boxes as in [13],

we computed the IoU at point-level. This is because our aim

is not only to localize repetitive objects but also to segment

them. In particular, an object O (a set of vertices) formed by

the object search procedure is considered as true detection if

there exists an annotated object R in the ground-truth such

that
|O∩R|
|O∪R| > 0.5 where | · | denotes the area.

The evaluation was performed on every template. The

precision, recall, and F -measure (= 2× Precision×Recall
Precision+Recall

) were

then averaged over all evaluations. Table 2 shows the averaged

precision, recall, and F -measure of the object search. As shown,

the object search can localize 70% of repetitive objects with

69% precision and 65% F -measure. We have also tested the

object search without considering the alignment error, i.e. E
in (7). We have found that, compared with the solely use of

shape context dissimilarity score (i.e. C in (6)), while the

augmentation of alignment error could slightly incur a loss of

the detection rate (about 2%), it largely improved the precision

(from 22% to 69%). This led to a significant increase of the

F -measure (from 30% to 65%).

Experimental results show that, the object search worked

efficiently with templates represented by about 200 points. For

example, the scene presented in Fig. 5 was completed within 15

seconds with a 150-point template and on a machine equipped

by an Intel(R) Core(TM) i7 2.10 GHz CPU and 32 GB of

memory. Note that threads can be used to run the object search

in the background while users are performing interactions.

TABLE 2

Performance of the proposed object search.

Precision Recall F -measure

Without alignment error 0.22 0.72 0.30
With alignment error 0.69 0.70 0.65

9.4 Evaluation of 2D Segmentation

We also evaluated the performance of the 2D segmentation

using the OCE metric. This experiment was conducted on

12

the dorm sequence from the SUN3D dataset [3]. The dorm

sequence contained 58 images in which the ground-truth labels

were manually crafted and publicly available.

We report the segmentation performance obtained by pro-

jecting 3D regions into 2D images and by applying our

alignment algorithm in Table 3. The impact of the local shape,

continuity, and smoothness is also quantified. As shown in

Table 3, the combination of the local shape, continuity, and

smoothness achieves the best performance. We have visually

found the alignment algorithm could make the projected

contours smoother and closer to the true edges.

Experimental results show our alignment algorithm worked

efficiently. On average, the alignment could be done in about

1 second for a 640× 480-pixel frame.

TABLE 3

Comparison of different segmentation methods.

Segmentation method OCE

Projection 0.57
Local shape 0.60
Local shape + Continuity 0.55
Local shape + Smoothness 0.55
Local shape + Continuity + Smoothness 0.54

10 CONCLUSION

This paper proposed a robust tool for segmentation and

annotation of 3D scenes. The tool couples 3D geometric infor-

mation and multi-view 2D RGB information in an interactive

framework. To enhance the usability of the tool, we developed

assistive, interactive operations that allow users to flexibly

manipulate scenes and objects in both 3D and 2D space. The

tool is also equipped with automated functionalities such as

scene and image segmentation, and object search.

Along with the tool, we created a dataset of more than 100

scenes. All the scenes were annotated using our tool. The

overall performance of the tool depends on the quality of

3D reconstruction. We are currently improving the quality of

3D meshes by recovering broken surfaces and missing object

parts. User interactions could provide valuable information for

many tasks, e.g. segmentation, annotation, and object search.

Enhancing the performance of these tasks based on learning

user interaction patterns (e.g. automatically learning templates

and parameters) will also be our future work.

APPENDIX

We have conducted a user study on the effectiveness of our

interactive operations (merge, split, extract, and undo). There

were 15 users involved in this study. The user study included

two tasks (A and B) designed to handle simple and complex

scenes. In task A, users were asked to segment a scene with

only a few chairs and a table in two minutes. In task B, users

were required to segment a complex bedroom scene containing

a significant amount of furniture and many small objects in

ten minutes. All operations users performed were logged. The

statistics are shown in Fig. 11.

(a) Task A (two minutes)

(b) Task B (ten minutes)

Fig. 11. User study statistics. In each task, users were given
an initial segmentation (left), which was then refined using
interactive operations (right).

As can be seen, in both segmentation tasks, merge operation

dominates, followed by extract and split operation. While a

few users prefer split over extract (e.g. user 4, 6, 12, and 15

in task A; user 1 and 6 in task B), in such cases the number

of split operation is always very few compared to merge. Note

that our tool offers both flexibility in segmenting objects with

various sizes as well as efficiency in computation since small

segments for extract can be pre-computed.

In addition, task A also shows that merge is the most

straightforward operation for new users. Extract and split are

more useful when a scene gets more complex, with some coarse

segments spread over small objects.

13

ACKNOWLEDGMENT

Binh-Son Hua is supported by the SUTD Digital Manufacturing

and Design (DManD) Centre which is supported by the

National Research Foundation (NRF) of Singapore.

Lap-Fai Yu is supported by the Joseph P. Healey Research

Grant Program provided by the Office of the Vice Provost

for Research and Strategic Initiatives & Dean of Graduate

Studies of UMass Boston. This research is also supported by the

National Science Foundation under award number 1565978. We

acknowledge NVIDIA Corporation for graphics card donation.

Sai-Kit Yeung is supported by Singapore MOE Academic

Research Fund MOE2016-T2-2-154 and Supported by Heritage

Research Grant of the National Heritage Board, Singapore. We

acknowledge the support of the SUTD Digital Manufacturing

and Design (DManD) Centre which is supported by the

National Research Foundation (NRF) of Singapore. This

research is also supported by the National Research Foundation,

Prime Minister’s Office, Singapore under its IDM Futures

Funding Initiative and its Environmental & Water Technologies

Strategic Research Programme and administered by the PUB,

Singapores National Water Agency. This material is based

on research/work supported in part by the National Research

Foundation under Virtual Singapore Award No. NRF2015VSG-

AA3DCM001-014.

We thank Fangyu Lin and Quang-Hieu Pham for assisting

with data capture and Guoxuan Zhang for the early version

of the tool. The Lounge scene data in Figure 2 is courtesy of

Zhou and Koltun [38].

REFERENCES

[1] H. Roth and M. Vona, “Moving volume kinectfusion,” in British Machine

Vision Conference, 2012.
[2] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time

3D reconstruction at scale using voxel hashing,” ACM Transactions on

Graphics (TOG), vol. 32, no. 6, 2013.
[3] J. Xiao, A. Owens, and A. Torralba, “SUN3D: A database of big

spaces reconstructed using sfm and object labels,” in IEEE International

Conference on Computer Vision, 2013.
[4] Q. Y. Zhou and V. Koltun, “Simultaneous localization and calibration:

Self-calibration of consumer depth cameras,” in IEEE International

Conference on Computer Vision and Pattern Recognition, 2014.
[5] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and

J. Mcdonald, “Real-time large-scale dense RGB-D SLAM with volumetric
fusion,” International Journal of Robotics Research, vol. 34, no. 4-5, pp.
598–626, 2015.

[6] O. Kähler, V. Adrian Prisacariu, C. Yuheng Ren, X. Sun, P. Torr, and
D. Murray, “Very high frame rate volumetric integration of depth images
on mobile devices,” IEEE Transactions on Visualization and Computer

Graphics, vol. 21, no. 11, pp. 1241–1250, 2015.
[7] J. P. C. Valentin, S. Sengupta, J. Warrell, A. Shahrokni, and P. H. S. Torr,

“Mesh based semantic modelling for indoor and outdoor scenes,” in IEEE

International Conference on Computer Vision and Pattern Recognition,
2013.

[8] C. Hane, C. Zach, A. Cohen, R. Angst, and M. Pollefeys, “Joint 3D
scene reconstruction and class segmentation,” in IEEE International

Conference on Computer Vision and Pattern Recognition, 2013.
[9] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,

“3D ShapeNets: A deep representation for volumetric shape modeling,”
in IEEE International Conference on Computer Vision and Pattern

Recognition, 2015.
[10] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert, “From 3D scene

geometry to human workspace,” in IEEE International Conference on

Computer Vision and Pattern Recognition, 2011.
[11] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “Labelme:

A database and web-based tool for image annotation,” International

Journal of Computer Vision, vol. 77, no. 1-3, pp. 157–173, 2008.

[12] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and F. F. Li, “Imagenet:
A large-scale hierarchical image database,” in IEEE International

Conference on Computer Vision and Pattern Recognition, 2009.

[13] M. Everingham, L. J. V. Gool, C. K. I. Williams, J. M. Winn, and
A. Zisserman, “The pascal visual object classes (VOC) challenge,”
International Journal of Computer Vision, vol. 88, no. 2, pp. 303–338,
2010.

[14] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “SUN database:
Large-scale scene recognition from abbey to zoo,” in IEEE International

Conference on Computer Vision and Pattern Recognition, 2010.

[15] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 11, pp. 1958–1970, 2008.

[16] J. Deng, A. C. Berg, , K. Li, and F. F. Li, “What does classifying more
than 10, 000 image categories tell us?” in European Conference on

Computer Vision, 2010.

[17] X. Ren, L. Bo, and D. Fox, “RGB-(D) scene labeling: features and
algorithms,” in IEEE International Conference on Computer Vision and

Pattern Recognition, 2012.

[18] S. Gupta, P. Arbelaez, and J. Malik, “Perceptual organization and
recognition of indoor scenes from RGB-D images,” in IEEE International

Conference on Computer Vision and Pattern Recognition, 2013.

[19] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust reconstruction of indoor
scenes,” in IEEE Conference on Computer Vision and Pattern Recognition,
2015.

[20] M. Jancosek and T. Pajdla, “Multi-view reconstruction preserving weakly-
supported surfaces,” in IEEE International Conference on Computer

Vision and Pattern Recognition, 2011.

[21] J. Valentin, V. Vineet, M. M. Cheng, D. Kim, J. Shotton, P. Kohli,
M. Niessner, A. Criminisi, S. Izadi, and P. Torr, “Semanticpaint: Interative
3D labeling and learning at your fingertips,” ACM Transactions on

Graphics (TOG), vol. 34, no. 5, 2015.

[22] O. Miksik, V. Vineet, M. Lidegaard, R. Prasaath, M. Nießner, S. Golodetz,
S. L. Hicks, P. Pérez, S. Izadi, and P. H. S. Torr, “The semantic paintbrush:
Interactive 3D mapping and recognition in large outdoor spaces,” in ACM

Conference on Human Factors in Computing Systems, 2015.

[23] R. Guo and D. Hoiem, “Support surface prediction in indoor scenes,” in
IEEE International Conference on Computer Vision, 2013.

[24] Z. Jia, A. C. Gallagher, A. Saxena, and T. Chen, “3D-based reasoning
with blocks, support, and stability,” in IEEE International Conference

on Computer Vision and Pattern Recognition, 2013.

[25] D. Lin, S. Fidler, and R. Urtasun, “Holistic scene understanding for 3D
object detection with RGBD cameras,” in IEEE International Conference

on Computer Vision, 2013.

[26] B. Kim, P. Kohli, and S. Savarese, “3D scene understanding by voxel-
CRF,” in IEEE International Conference on Computer Vision, 2013.

[27] Y. S. Wong, H. K. Chu, and N. J. Mitra, “Smartannotator: An interactive
tool for annotating RGBD indoor images,” Computer Graphics Forum,
vol. 34, no. 2, 2015.

[28] Y. Wang, R. Ji, and S. F. Chang, “Label propagation from imagenet to
3D point clouds,” in IEEE International Conference on Computer Vision

and Pattern Recognition, 2013.

[29] Y. M. Kim, N. J. Mitra, D. M. Yan, and L. Guibas, “Acquiring 3D
indoor environments with variability and repetition,” ACM Transactions

on Graphics (TOG), vol. 31, no. 6, 2012.

[30] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and
A. J. Davison, “SLAM++: Simultaneous localisation and mapping at the
level of objects,” in IEEE International Conference on Computer Vision

and Pattern Recognition, 2013.

[31] L. Nan, K. Xie, and A. Sharf, “A search-classify approach for cluttered
indoor scene understanding,” ACM Transactions on Graphics (TOG),
vol. 31, no. 6, 2012.

[32] T. Shao, W. Xu, K. Zhou, J. Wang, D. Li, and B. Guo, “An interactive
approach to semantic modeling of indoor scenes with an RGBD camera,”
ACM Transactions on Graphics (TOG), vol. 31, no. 6, 2012.

[33] K. Chen, Y. K. Lai, Y. X. Wu, R. Martin, and S. M. Hu, “Automatic
semantic modeling of indoor scenes from low-quality RGB-D data using
contextual information,” ACM Transactions on Graphics (TOG), vol. 33,
no. 6, 2014.

[34] Y. Zhang, W. Xu, Y. Tong, and K. Zhou, “Online structure analysis for
real-time indoor scene reconstruction,” ACM Transactions on Graphics,
2015.

[35] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object
recognition using shape contexts,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 24, no. 4, pp. 509–522, 2002.

14

[36] K. Tateno, F. Tombari, and N. Navab, “Real-time and scalable incremental
segmentation on dense SLAM,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2015.
[37] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,

A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in IEEE

International Symposium on Mixed and Augmented Reality, 2011.
[38] Q. Y. Zhou and V. Koltun, “Dense scene reconstruction with points of

interest,” ACM Transactions on Graphics (TOG), vol. 32, no. 4, 2013.
[39] N. Fioraio, J. Taylor, A. W. Fitzgibbon, L. D. Stefano, and S. Izadi,

“Large-scale and drift-free surface reconstruction using online subvolume
registration,” in IEEE International Conference on Computer Vision and

Pattern Recognition, 2015.
[40] A. Dai, M. Nießner, M. Zollöfer, S. Izadi, and C. Theobalt, “Bundlefusion:

Real-time globally consistent 3d reconstruction using on-the-fly surface
re-integration,” ACM Transactions on Graphics 2017 (TOG), 2017.

[41] O. Kähler, V. A. Prisacariu, and D. W. Murray, “Real-time large-scale
dense 3D reconstruction with loop closure,” in European Conference on

Computer Vision, 2016.
[42] W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D

surface construction algorithm,” ACM Transactions on Graphics, vol. 21,
no. 4, pp. 163–169, 1987.

[43] P. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, no. 2,
pp. 167–181, 2004.

[44] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[45] A. Karpathy, S. D. Miller, and F. F. Li, “Object discovery in 3D scenes
via shape analysis,” in IEEE International Conference on Robotics and

Automation, 2013, pp. 2088–2095.
[46] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk,

“Slic superpixels compared to state-of-the-art superpixel methods,” IEEE

Transactions on Pattern Analysis and Machince Intelligence, vol. 34,
no. 11, pp. 2274–2282, 2012.

[47] S. A. Barker and P. J. W. Rayner, “Unsupervised image segmentation
using markov random field models,” Pattern Recognition, vol. 33, no. 4,
pp. 587–602, 2000.

[48] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE International Conference on Computer Vision and

Pattern Recognition, 2005, pp. 886–893.
[49] M. Körtgen, G. J. Park, M. Novotni, and R. Klein, “3D shape matching

with 3D shape contexts,” in Central European Seminar on Computer

Graphics, 2003.
[50] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for

dense and sparse linear assignment problems,” Computing, vol. 38, pp.
325–340, 1987.

[51] B. K. P. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Journal of the Optical Society of America A, vol. 4, no. 4,
pp. 629–642, 1987.

[52] J. Canny, “A computational approach to edge detection,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp.
679–698, 1986.

[53] N. Narappanawar, B. M. Rao, and M. Joshi, “Graph theory based
segmentation of traced boundary into open and close sub-sections,”
Computer Vision and Image Understanding, vol. 115, no. 11, pp. 1552–
1558, 2011.

[54] A. Thayananthan, B. Stenger, P. H. S. Torr, and R. Cipolla, “Shape
context and chamfer matching in cluttered scenes,” in IEEE International

Conference on Computer Vision and Pattern Recognition, 2003, pp.
127–133.

[55] G. Bertasius, J. Shi, and L. Torresani, “Deepedge: A multi-scale bifurcated
deep network for top-down contour detection,” in IEEE International

Conference on Computer Vision and Pattern Recognition, 2015.
[56] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. W.

Fitzgibbon, “Scene coordinate regression forests for camera relocalization
in RGB-D images,” in IEEE International Conference on Computer Vision

and Pattern Recognition, 2013.
[57] M. Polak, H. Zhang, and M. Pi, “An evaluation metric for image

segmentation of multiple objects,” Image and Vision Computing, vol. 27,
pp. 1123–1127, 2009.

[58] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating algorithms
and measuring ecological statistics,” in IEEE International Conference

on Computer Vision, 2001, pp. 416–423.

Duc Thanh Nguyen received his Ph.D. degree in
Computer Science from the University of Wollon-
gong, Australia, in 2012. Currently, he is a lecturer
at the School of Information Technology, Deakin
University, Australia. His research interests in-
clude Computer Vision and Pattern Recognition.
Dr. Nguyen has published his work in highly
ranked publication venues in Computer Vision
and Pattern Recognition such as the Journal of
Pattern Recognition, CVPR, ICCV, ECCV. He
also has served a technical program committee

member of the IEEE Int. Conf. Image Process. (from 2012) and reviewer
of the IEEE Trans. Intell. Transp. Syst., IEEE Trans. Image Process., IEEE
Signal Processing Letters, Image and Vision Computing.

Binh-Son Hua is currently a postdoctoral re-
searcher in Singapore University of Technology
and Design. He received his PhD degree in
Computer Science from National University of
Singapore in 2015. He also received his B.E.
(Hons) from Ho Chi Minh City University of Tech-
nology, Vietnam, in 2008. His research interests
are 3D reconstruction, 3D scene understanding,
and physically based rendering.

Lap-Fai (Craig) Yu is an assistant professor at
the University of Massachusetts at Boston. He
obtained his PhD degree in computer science
from UCLA in 2013. His research interests are in
computer graphics and vision, especially in the
topics of synthesizing and analysing 3D models
from the perspectives of functionality, physics,
intentionality and causality. He is the recipient
of the Cisco Outstanding Graduate Research
Award, the UCLA Dissertation Year Fellowship,
the Sir Edward Youde Memorial Fellowship and

the Award of Excellence from Microsoft Research. His research has
been featured in New Scientist, the UCLA Headlines and newspapers
internationally. He regularly serves on the program committee of EURO-
GRAPHICS, Pacific Graphics and IEEE Virtual Reality.

Sai-Kit Yeung is currently an Assistant Profes-
sor at the Singapore University of Technology
and Design (SUTD), where he leads the Vi-
sion, Graphics and Computational Design (VGD)
Group. He was also a Visiting Assistant Professor
at Stanford University and MIT. Before joining
SUTD, he had been a Postdoctoral Scholar in
the Department of Mathematics, University of
California, Los Angeles (UCLA). He was also
a visiting student at the Image Processing Re-
search Group at UCLA in 2008 and at the Image

Sciences Institute, University Medical Center Utrecht, the Netherlands
in 2007. He received his PhD in Electronic and Computer Engineering
from the Hong Kong University of Science and Technology (HKUST) in
2009. He also received a BEng degree (First Class Honors) in Computer
Engineering in 2003 and a MPhil degree in Bioengineering in 2005
from HKUST. His research interests include computer vision, computer
graphics and computational fabrication.

	Introduction
	Related Work
	System Overview
	Scene Reconstruction
	Geometry reconstruction
	3D-2D Correspondence

	Segmentation in 3D
	Graph-based Segmentation
	MRF-based Segmentation

	Segmentation Refinement and Annotation in 3D
	Object Search
	Shape Context
	Shape Matching
	Searching

	Segmentation in 2D
	Experiments
	Dataset
	Evaluation of 3D Segmentation
	Evaluation of Object Search
	Evaluation of 2D Segmentation

	Conclusion
	Appendix
	References
	Biographies
	Duc Thanh Nguyen
	Binh-Son Hua
	Lap-Fai (Craig) Yu
	Sai-Kit Yeung

