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1 Pancreas Results

We provide full comparisons on Pancreas dataset in Table 1, which extends the
results reported in the main paper.

Table 1: Dice score comparison on Pancreas dataset.

Method Average ↑ Method Average ↑

Zhou et al. [15] 82.37 ± 5.68 Roth et al. [10] 78.01 ± 8.20
Roth et al. [9] 71.42 ± 10.11 Roth et al. [11] 81.27 ± 6.27
Oktay et al. [8] 83.10 ± 3.80 Zhang et al. [13] 77.89 ± 8.52
Cai et al. [1] 82.40 ± 6.70 Zhou et al. [15] 82.37 ± 5.68
Zhu et al [16] 84.59 ± 4.86 Dou et al. [2] 82.25 ± 5.91

Ours 85.68 ±5.96 Yu et al. [12] 84.50 ± 4.97

2 Ablation study

We conducted an ablation study on the offline validation set of BraTS20. We
provided variants of our model to demonstrate the significance of the volumetric
saliency attention network, point-based segmentation network, and the GDL loss.
The results are shown in Table 2, which demonstrates the importance of our
proposed saliency network and point-based segmentation.

Particularly, model A is our reported model in Table 3 in the main paper. By
removing the saliency attention network and only use point-based segmentation,
we obtain model B that resembles RandLANet, the accuracy of which drops
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Table 2: Ablation study. We show dice measurements on variants of our method
on the BraTS 2020 offline validation set.

Method
Dice score ↑

ET WT TC AVG

E: 3D U-Net [5] 66.92 82.86 72.98 74.25

D: Attention 3D U-Net [14] 69.87 89.68 79.28 79.61

C: Ours without GDL Loss 69.33 89.36 69.51 76.06

B: Ours without saliency (RandLANet) 67.40 87.74 76.85 77.33

A: Ours (Point-Unet) 76.43 89.67 82.97 83.02

significantly (6%). Model B was reported in Table 3 (paper) as RandLANet [3].
To verify the effectiveness of the generalized dice loss (GDL), we remove GDL
and use cross entropy in the point-based network (model C), which also results
in accuracy loss by almost 7%. Compared to the traditional U-Net (3D U-Net [5],
model E) and an attention-based U-Net which we extended from [14] (model D)
that employs only volumetric segmentation, which is equivalent to our method
without the point-based segmentation, our method also outperforms significantly.
This verifies that both components (volumetric saliency attention network and
point-based segmentation network) together with GDL contribute significantly
in our method.

3 Details on Point Sampling

We provide additional details for the point sampling step in our method. In
general, our proposed method has two main steps: saliency attention prediction
and point-based segmentation. In our training, we train the saliency network
(voxel segmentation) and point segmentation separately. We first train the saliency
network with the target labels as binary: foreground that are union of all ground
truth tumor regions, and background for remaining voxels. Dice loss is used for
training the saliency network. After training the saliency network, we perform
point sampling based on thresholding the confidence output from the saliency
network to establish point clouds for segmentation.

To generate the point cloud, we threshold the confidence output of the atten-
tion network (threshold 0.9), and voxels passing the threshold become foreground
(FG) points. We randomly sample remaining voxels to obtain background (BG)
points. The union of FG and BG points form an input point cloud for segmenta-
tion. Note that the FG already contains tumor regions, and the BG only provides
additional context data for learning. The segmentation results of the FG can be
simply used as the final tumor segmentation results, and *no resampling* from
point cloud to volume is required. We also tested with different thresholds and
found that it is quite insensitive to the model performance ( 1-percent difference
when varying the threshold in [0.6, 0.95]) as shown in Table 3.
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Table 3: Evaluation with different confidence thresholds for our point sampling
scheme. The results are on BraTS 2020 offline set.

Threshold
Dice score ↑

ET WT TC AVG

0.5 75.82 85.53 82.05 81.14

0.6 75.90 86.43 82.26 81.53

0.7 75.91 87.45 82.69 82.02

0.8 76.04 88.45 82.88 82.46

0.9 76.43 89.67 82.97 83.02

0.95 76.26 89.39 83.12 82.93

0.975 76.36 89.35 82.57 82.76

3.1 Random Sampling vs. Our Sampling
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Fig. 1: Illustration on the small objects. RS: random sampling, CA: context-
aware, GT: groundtruth. (a) and (b) are two different brain subjects. The
enlarged view of the lesion is given on the right.

The comparison between random sampling and our proposed context-aware
sampling is given in Figure 1(II). Random sampling treats every pixel in the
same manner, thus there is no mechanism to pay attention to boundaries as
well as small objects to address the above limitations. As given in Figure 1(I),
random sampling produces the results in zigzag artifact at boundaries while
the object surface plays an important role in medical analysis which aims to
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understand the topologial strucutre. Furthermore, random sampling scheme may
not always capture every sample in a population. This causes the missing of
small objects during sampling and segmenting as given in Figure 1(I). Not only
unable to address the aformentioned difficulties, random sampling also has some
other restrictions. The limitations of random sampling is summarized as follows:

– Results in zigzag artifact at boundaries;
– Unable to capture small objects;
– Inference is costly: In order cover entire brain space, it requires performing

random sampling serval times;
– Cannot guarantee the tumor area will be completely covered after many

iterations at inference.

By contrast, our context-aware sampling addresses such issues by placing more
samples at the region of interests while maintaining samples in the background
regions.

4 Visualization Result on BraTS

Figure 2 illustrates volumetric segmentation at three planes (sagittal, coronal,
axial) on different methods given an input. The proposed Point-Unet (in the last
column) provided a better segmentation results, resulting in better Dice score
and Hausdorff95 distance. As can be seen, our Point-Unet segmentation provides
an improved segmentation along the tumor boundary (indicated by the pink
arrows) than the existing SOTA methods.
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Fig. 2: Segmentation results on different planes (1st row: Sagittal, 2nd row: Coro-
nal, 3rd: Axial) generated by (a) source image (Flair modality); (b) groundtruth;
(c) baseline 3DUnet[5]; (d) nnNet [4]; (e) aeUnet [7]; (f) RandLA-Net [6]; (g) our
Point-Unet. Our method provides a good boundary on the tumor areas (pink
arrows →) compared with existing methods.
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