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ABSTRACT

While geometry reconstruction has been extensively studied, several
shortcomings still exist. First, traditional geometry reconstruction
methods such as geometric or photometric stereo only recover either
surface depth or normals. Second, such methods require calibra-
tion. Third, such methods cannot recover accurate geometry in the
presence of interreflections. In order to address these problems in
a single system, we propose an approach to reconstruct geometry
from light transport data. Specifically, we investigate the problem
of geometry reconstruction from interreflections in a light transport
matrix. We show that by solving a system of polynomial equations
derived directly from the interreflection matrix, both surface depth
and normals can be fully reconstructed. Our system does not re-
quire projector-camera calibration, but only make use of a calibra-
tion object such as a checkerboard in the scene to pre-determine a
few known points to simplify the polynomial solver. Our experi-
mental results show that our system is able to reconstruct accurate
geometry from interreflections up to a certain noise level. Our sys-
tem is easy to set up in practice.

Index Terms— light transport, shape from interreflections,
depth reconstruction, normal reconstruction

1. INTRODUCTION

Geometry reconstruction has been extensively studied in computer
vision in the past decades. Reconstruction techniques such as geo-
metric stereo and photometric stereo have greatly matured and have
widely been used in both scientific and industrial applications. How-
ever, like many other computer vision techniques, previous recon-
struction approaches only account for direct illumination and ignores
an important lighting effect that often occurs in a scene: global il-
lumination. Therefore, those techniques can only handle scenes in
which interreflection or sub-surface scattering is absent. In order to
improve robustness of geometry reconstruction, global illumination
would need to be properly considered.

4D light transport is a general matrix representation that cap-
tures a scene observed in a set of varying illuminations. An entry
in the matrix captures the out-going radiance at a scene point illu-
minated by a light source. It is also well-known that under Lam-
bertian assumption, light transport matrix can be factorized into the
first-bounce light transport matrix which captures direct illumina-
tion, and the interreflection matrix which captures illumination that
bounces from a surface to another in the scene [1]. In computer
graphics, several applications of light transport have been proposed
such as relighting, dual photography, and radiometric compensation.
However, in computer vision, light transport has not been received
great attentions for tasks such as geometry reconstruction. Since
light transport captures global illumination, it is of great interest to
explore geometry reconstruction from such global illumination data.
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Fig. 1.
structed points from exact data by form factor formula. (c) Recon-
structed points from data by radiosity renderer.

(a) Synthetic light transport using radiosity. (b) Recon-

In this work, we present a new approach to recover scene geom-
etry from light transport. Our reconstruction is based on solving a
system of polynomial equations derived directly from the interreflec-
tion matrix. We show that our method can reconstruct both surface
depth and normals from interreflections. Our method does not re-
quire the projector and the camera to be calibrated. It also does not
rely on orthographic assumption and planar constraints [2]. We only
use a checkerboard pattern in the scene to pre-determine coordinates
of a few points to bootstrap the solving of polynomial equations.
Therefore, it can more easy to use in practice.

2. RELATED WORKS

In this section, we first discuss two classes of traditional reconstruc-
tion techniques, triangulation-based methods and photometric stereo
methods. We then discuss about recent techniques that recover ge-
ometry in the presence of global illumination.

2.1. Conventional methods

Triangulation-based methods, e.g., geometric stereo and structured
light scanning, has long been common approaches for geometry re-
construction. Geometric stereo is sometimes problematic since it re-
lies on scene features such as corners to determine correspondences,
which is not always robust. Structured light scanning projects spe-
cial light patterns into the scene so that correspondences between
the projector and the camera can be decoded in the post-process.
However, while triangulation-based methods yields 3D coordinates



of scene points, it does not compute surface normals directly. Sur-
face normals can be found from derivatives of local surfaces which
needs to be reconstructed for each neighborhood of scene points.

On the other hand, photometric stereo observes the scene un-
der varying illumination with the camera view fixed. Based on sur-
faces illuminated by at least three different directional light sources,
surface normals can be solved from a linear system. In contrast to
triangulation-based methods, photometric stereo yields surface nor-
mals directly, but it does not compute 3D coordinates of surface
points. 3D coordinates can be determined by integrating normal vec-
tors. Since triangulation-based methods and photometric stereo re-
construct attributes of surfaces that are complementary to each other,
it is of great interest to seek methods that can produce surface depth
and normals at the same time. In this work, we propose such an
approach that aims to reconstruct geometry from light transport.

Also, a common drawback of conventional geometric and pho-
tometric stereo is that calibration is necessary. Geometric stereo
requires the camera to be calibrated while photometric stereo as-
sumes directional light source and requires the directions of the light
sources to be known. Some efforts has been done to relax the neces-
sity of such calibration. For example, Basri and Jacobs [3] showed
that surface normals can be recovered from uncalibrated photomet-
ric stereo up to a general bas-relief ambiguity. Recently, Yamazaki
et al. [4] proposed the joint recovery of intrinsic and extrinsic pa-
rameters of both camera and projectors in a projector-camera setup.
However, their method still requires the center of projection of both
camera and projector to be known.

Extensions of photometric stereo to near point light source have
also been proposed [5, 6]. In such setup, depth recovery can be incor-
porated into photometric stereo due to the modeling of light fall-off
by the inverse squared law. However, while near point light source
is more practical, these methods still require the location of the light
sources to be known. Our system is more convenient as it does not
require the calibration of the projector. The only object that we need
is a checkerboard pattern put in the scene to help determine known
points in the post-processing.

2.2. Hybrid methods

In this work, our proposed system jointly reconstructs surface depth
and normals and hence can be regarded as a combination of geomet-
ric and photometric stereo in terms of output. In this aspect, several
similar hybrid systems have been proposed in the past [7, 8, 9]. For
example, Aliaga and Xu [7] proposed a self-calibration method that
utilizes both geometric and photometric stereo. Holroyd et al. [8]
combined multiple view reconstruction and phase shifting to recover
complete 3D geometry and surface reflectance of a target object.
Yoon et al. [9] suggested a non-linear optimization framework to re-
cover geometry and reflectance from multiple view geometry, which
requires a good initialization for the non-linear optimization. While
our system is quite similar to these works, we explore geometry re-
construction from light transport data of a scene. This can be more
convenient since light transport can also be at the same time utilized
for other applications relighting and radiometric compensation. Our
system also does not require explicit calibration as in [8].

2.3. Reconstruction in the presence of global illumination

While traditional reconstruction methods work well for Lamber-
tian and mostly diffuse surfaces, they ignore an important effect
that is commonly seen: global illumination. This strict assumption
can limit accurate shape reconstruction when global illumination is

strong, e.g., when light bounces within concave surfaces. It has been
shown that photometric stereo tends to produce a shallower concave
surface if interreflections are not taken into account [10].

In order to accurately reconstruct geometry in the presence of
global illumination, two different strategies can be used. The first
approach is to separate global illumination based on the principle
proposed by Nayar et al. [11]. They show that since global illu-
mination is a low-frequency effect, it is almost invariant to high-
frequency illumination. Therefore, by using high-frequency light
patterns, either binary or phase-shift patterns, it is possible to sepa-
rate direct and global illumination. Since then, several methods have
been proposed to make geometry reconstruction robust to global illu-
mination [12, 13]. Gupta et al. [12] studied the relationship between
projector defocus and global illumination and showed that such ad-
verse effects can be separated and removed from the scene. Geom-
etry can then be reconstructed from direct illumination. Gupta et
al. [13] proposed a method to design structured light patterns that
yield accurate correspondences in the presence of short-range and
long-range global illumination. Gupta and Nayar [14] also suggested
that phase shifting can be extended to include only high-frequency
patterns so that reconstruction is robust to global illumination. Cou-
ture et al. [15] showed that random patterns can also be used to
finding robust correspondences. However, methods based on explic-
itly removing global illumination and reconstructing geometry from
residual direct illumination can still fail when signal-to-noise ratio
of direct illumination is too low, e.g, as in translucent objects that
have strong sub-surface scattering. Approaches that do not require
explicit removal of global illumination do not have this drawback,
but they need different pattern designs to handle different global il-
lumination effects [13]. Furthermore, all these approaches are based
on triangulation, which requires the light source and the camera to
be fully calibrated.

Another approach to handle global illumination is to model it ex-
plicitly, which is also the approach we chose to follow. This class of
methods can be useful when the scene is dominated by global illumi-
nation. Nayar et al. [10] proposed to refine surface normals obtained
by photometric stereo using interreflection. Liu et al. [2] proposed
to reconstruct geometry from the interreflection matrix. We note that
the work in [2] is probably most related to ours. However, the au-
thors assumed orthographic projection and did not properly handle
the area term in the interreflection model. We show that our method
is independent of the type of camera projection, and it can handle
the area term properly by considering it as an unknown scalar in the
system of polynomials.

In summary, we highlight three shortcomings from previous ap-
proaches. First, triangulation-based methods only recover surface
depth while photometric stereo only recovers surface normals. Sec-
ond, traditional geometric and photometric stereo require the acqui-
sition system to be carefully calibrated. Hybrid methods are needed
to jointly recover both surface depth and normals. Third, and more
importantly, global illumination is often ignored, which can cause
reconstruction surfaces to be shallower, as shown in [10]. As far as
we know, there has been no single acquisition system that address
such shortcomings altogether.

Therefore, in this work, we propose to build an acquisition sys-
tem that is aimed to fill this gap. Our hybrid system can jointly
recovers surface depth and normals. We explore how to reconstruct
such depth and normals directly from interreflections in a light trans-
port. Our system does not require orthographic assumption and pla-
nar constraints as in [2] and does not need calibration. We only use a
checkerboard in the scene to determine a few known points in order
to simplify the polynomial solver in the reconstruction. Therefore,



our system is easier to implement and more convenient to use in
practice.

3. INTERREFLECTIONS IN LIGHT TRANSPORT

The rendering equation that computes the out-going radiance L at
scene point x to scene point X can be written as

L(x,x") = La(x,x") + | A, x,x")L(x',x)dx" (1)
x/
where A is the interreflection operator, L, is the direct illumination
from x to x”'. We define light transport operator T that captures the
net effect of the whole light transport in the scene as follows.

L(x,x") :/ T(x',x,x")Le(x, x)dx, (2)

where L. is the emitted radiance from light sources. Similarly, we
define the first-bounce light transport F which only stores direct il-
lumination as

Ld(x,x”):/ F(x',x,x")Le(x', x)dx'. 3)

As we assume Lambertian surfaces, the rendering equation becomes
the radiosity equation. Since the out-going radiance is the same for
all directions determined by x”’, we drop the outgoing direction x”’
and simply store radiosity 7 L(x,x’) at each surface point x. Nu-
merically, a light transport matrix T can be represented by

T=(I-A)"'F 4)

where I is the identity matrix. Since all surfaces are Lambertian,
first-bounce F and inverse light transport T~! can be computed
from light transport T as in [1]. The interreflection matrix A can
be obtained by

A=I-FT " )

Since the interreflection matrix A captures how much illumination
bounces from a surface to another in the scene, it is possible to utilize
such information for geometry reconstruction. We show how it can
be done in the following section.

4. OUR METHOD

4.1. Polynomial equations from interreflections

Each element A ;_,; (represented as matrix entry A ;;) captures how
radiosity from a source surface patch ¢ contributes to a target patch
7 and can be written as:

Ai; =K;Gio A ©)
where k; is the albedo of patch j, A; the area of patch i, and
Gioj; = Gjo; the geometric factor between patch 4 and patch j:

n (x; —x;)n; (x; — x;)

Gioj = @)

lxi —x;|*
where x and n denote the location and orientation of a patch, re-

spectively. If patch ¢ is visible in the camera view, its area can be
approximated as:

lle — il

T

Ale ixel T,
P nl (e —xi)

®

where c is the camera location and Ayl is the area of the pixel that
contains patch i.

It is easy to see that the interreflection matrix A captures albedo,
location, and orientation of geometric points in the scene. Our goal
is to reconstruct the location and orientation of the geometry from A.
However, solving the complete geometry from A can be very chal-
lenging because interreflection equations are non-linear and there are
a large number of unknowns. To make the problem tractable, we as-
sume a set of known points @ in the scene and try to reconstruct the
set of unknown points P from the interreflections between P and Q.

Consider a pair of points p; and q; where s € P and j € Q. We
would like to reconstruct the albedo, location, and orientation of p;
from its interreflection with q;, which are captured by entries A;_,;
and A ;_,; in the interreflection matrix.

Consider A;_,;. We observe that equation A;_,; is almost a
polynomial except the area term A; that depends on the foreshorten-
ing of the patch to the camera view. We now show how to formulate
A,;_,; into a polynomial.

For simplicity, we first drop index ¢ since we are going to fix ¢
and only consider A;_,; for varying j. Therefore, we rewrite Equa-
tion 6 as

Aj = iji(—»jA (9)

Let a; = k;A. We further assume that k; is invariant for points
j € @Q where A; > 0. This is a reasonable assumption since we
can group points that have similar albedos together into group Q.
This allows us to model a; as a single scalar variable a = a; for all
j € Q. Multiplying a with the orientation n to obtain m = an, the
radiosity from q; to p; can be written as:

" (x = xj)n] (x — x;)

A; = (10)

% — x|

which is a polynomial equation in which the unknowns are a 6-DOF
vector (x, m). We now propose an algorithm to solve (x, m).

4.2. Algorithm to recover location and orientation

Equation 10 suggests that at least six points in () are necessary to
recover each point p; separately. The equations can be easily built
given the entries A;_,; for j € (). Notice that we do not make use
of A;_,; by fixing j and varying ¢ in group P because it is often less
practical to assume that the area term A, is constant for different 3.
We build an algebraic polynomial solver based on Groebner ba-
sis to solve (x,m). We observe that the solutions given by the al-
gebraic solver are very close to the ground truth, and can be further
refined by a non-linear iterative solver when necessary. In general,
the algorithm to reconstruct (x, m) at each point p; is as follows.

1. Randomly select six points q; s.t. j € @ and A;,; > 0.
2. Reconstruct (x, m) using an algebraic polynomial solver.

3. Compute the residuals from the polynomial equations and re-
peat the above steps N times. Take (x, m) that has the lowest
residual.

4. Refine (x, m) with all points q; in @ by a non-linear iterative
solver.

4.3. Implementation

In practice, we implement the above framework with the following
assumptions. In Step 1, we assume points in set () to be planar. Lo-
cations and orientations of points on a plane can be easily determined
by a simple camera calibration. In Step 2, we translate known points



(a) Variance 1072 (b) Variance 107!
Fig. 2. Reconstruction results with noise variance 10~2 and 10~*
added to input images.

to plane z = 0 and orient the plane towards positive Z-axis. We note
that this simplifies the Groebner basis of the system of polynomials
to a set of 36 monomials. Positioning the plane at other locations can
make the system of polynomials more challenging to solve. For ex-
ample, letting the plane be at z = « that o # 0 results in a Groebner
basis that has 106 monomials. We implement a floating-point poly-
nomial solver based on the action matrix approach. Since there may
have several solutions, those that violates visibility constraints are
discarded in advance before proceeding to compute residuals. Step
3 is very similar to RANSAC [16]. However, here only a few itera-
tions of the first two steps are needed since the result can be refined
in Step 4. We use Levenberg-Marquardt optimization [17] in Step 4.

5. EXPERIMENTS

We test our algorithm with a synthetic scene rendered by direct form
factor calculation and a progressive radiosity algorithm. We use 16
area light sources to individually illuminate a known plane ). The
light sources are distributed uniformly on an unknown plane P and
our goal is to reconstruct the locations and orientations of the light
sources. For simplicity we only render direct illumination and set
albedos of scene objects to one. Therefore, the radiance observed at
plane @ can be directly used to find the locations and orientations of
light sources on P.

Figure 1 demonstrates that our algorithm can successfully re-
construct the locations and orientations of each light sources. We
note that our synthetic example is sufficient to test our reconstruction
from the system of polynomials. While our algorithm can work with
both data from exact form factor and data generated by a radiosity
renderer in this example, we did notice a slight shift in the geometry
reconstructed from the later as compared to the groundtruth. This
can be due to inaccuracy of the intensity values generated by radios-
ity methods.

In practice, the captured images can be subject to noise. In order
to test how our method behaves to noise in this synthetic scenario,
we proceed to add Gaussian noise to observed pixel values. Figure 2
shows that our solver can tolerate a certain amount of noise with
variance up to 107",

‘We acknowledge that since our method relies on radiometric val-
ues, i.e., radiance, and numerical solvers for reconstruction, our re-
covered geometry can be susceptible to noise and may not be as
accurate as traditional methods that bases on triangulation.

6. CONCLUSIONS

We proposed a novel approach to acquire geometry from interreflec-
tions. A system of polynomial equations is established directly from

the interreflection matrix and we show that by solving this system of
polynomial equations, the geometry of the scene, i.e., surface depth
and normal vectors, can be jointly reconstructed. Our experimen-
tal results demonstrated that our method works well with synthetic
datasets up to a certain noise level. Our system is convenient since it
does not require calibration.

Our system is limited by the following factors. First, while pro-
jector and camera calibration are not needed, a planar checkerboard
must be placed in the scene and interact with scene objects in order
to simplify the polynomial system. This can cause the arrangement
of objects in the scene to be not flexible. Second, our system can be
susceptible to noise. The floating-point implementation of the solver
of polynomial equations may return wrong solutions when the input
data is perturbed by a small amount of noise. Third, our model is
based on Lambertian assumption. In practice, this assumption may
not be always true. Surfaces in the scene can be up to some certain
degrees of glossiness, which violates the interreflection model and
causes the system to fail to reconstruct the geometry. Finally, since
we rely on acquiring light transport and solving polynomials for ge-
ometry reconstruction, our system is not fast enough for real-time
reconstruction.

From this study, we recognize several open problems for future
research. A potential direction is to design reconstruction methods
for more general materials, e.g., glossy or sub-surface scattering sur-
faces. It is more challenging to fully model such effects than to
model diffuse interreflections. Moreover, extracting the global illu-
mination matrix in such cases can be more difficult if the first-bounce
matrix is not given. One of the first works in this direction, e.g.,
shape from translucent surfaces, has been proposed in [18]. Another
potential direction can be to investigate the stability of the polyno-
mial solver used in our approach. In this work, we only used the
simplest form of the floating-point implementation of a polynomial
solver. We hypothesize that the solver can perform better if stabil-
ity approaches can be added [19]. Finally, it is of great interest to
study fast light transport acquisition to accelerate the data capturing
stage and make the system more practical. We also would like to per-
form more physical experiments to further test our whole proposed
pipeline thoroughly, since in this work we only present synthetic ex-
amples.
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