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ABSTRACT

We propose a single-image, shift-invariant motion deblurring ap-
proach where the blur kernel is directly estimated from light streaks
in the blurred image. Combining with the sparsity constraint, the
blur kernel can be solved quickly and accurately from a user input
region containing a light streak. This kernel can then be applied to
state-of-the-art single-image motion deblurring methods to restore
the sharp image. As our approach does not require verification of
the blur kernel against the blurred image, the deblurring can be per-
formed quickly enough for interactive use. For example, our method
can be used for interactively revealing scene details in different im-
age regions when the motion blur is not shift-invariant.

Index Terms— image restoration, deconvolution, motion de-
blurring, light streak.

1. INTERACTIVE MOTION DEBLURRING

Motion deblurring has been a challenging task in computer vision
and image processing. During exposure, camera sensor integrates
light continuously over time. When camera shake occurs, the sensor
integrates several unaligned images of the scene, producing a blurred
image. This motion blur is often assumed to be shift-invariant and
the blurred image is modeled as a convolution between the sharp
image and the blur kernel with the addition of noise:

B = I ⊗K +N, (1)

where B is the blurred image, I the latent sharp image, K the blur
kernel, N the sensor noise, and ⊗ the convolution operator.

Single-image motion deblurring is a classical blind deconvolu-
tion problem in which only the blurred image B is provided as input
and both the blur kernel K and the sharp image I are the unknowns.
The blur kernel and latent image estimation can be formulated into a
maximum-a-posteriori (MAP) framework and regularized by a vari-
ety of priors as blind deconvolution is highly ill-posed.

The MAP framework, which is turned into a convex optimiza-
tion, performs an alternating optimization between the blur kernel
and the latent sharp image until convergence. There are two draw-
backs in this formulation. Firstly, although convolution can be com-
puted quickly by FFT, alternating optimization is still a slow process.
Secondly, as the problem is highly ill-posed, there is no guarantee
that the blur kernel and the latent sharp image are correctly estimated
given only a single blurred image.

In this paper, we propose an interactive motion deblurring ap-
proach that makes use of point light streaks in the blurred image to
directly estimate the blur kernel. These light streaks are approxi-
mate motion paths of the camera shake and are commonly found in
blurred images. Typically, they originate from distant point lights
and specular highlights. For input, the user interactively selects an

(a) Blurred image

(b) Our result (33 sec.) (c) Shan et al. [6] (10 min.)

Fig. 1. Motion deblurring using the light streak from a specular high-
light. (a) The user selected light streak is shown in the left-most sub-
image. (b) The extracted blur kernel is shown in the left-most sub-
image. (c) Result obtained by an existing state-of-the-art method.

image region of the blurred image in which there exists a noticeable
point light streak. The blur kernel is then estimated from the input
region using a small-scale L1-norm optimization without the need
of using alternating optimization. A high-quality latent sharp image
can be estimated afterwards using a state-of-the-art non-blind motion
deblurring method. With our approach, firstly, the ill-posedness of
the problem is mitigated because the light streaks are good approx-
imations of the blur kernel. Secondly, slow traditional blur kernel
estimation is avoided so that deblurring can work fast enough for
interactive applications.

2. RELATED WORK

Motion deblurring is a well-studied problem in the past. To reduce
ill-posedness, many approaches have been proposed to utilize vari-
ous sources of prior information. In multiple-image motion deblur-
ring, an auxiliary image can be used together with the blurred image
as input, e.g. blurred/noisy image pair [1], dual blurred images [2],
and blurred/flash image pair [3]. An image captured from a dif-
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Fig. 2. Deblurring of a synthetically-blurred image containing light streaks from specular highlights. (a) The ground truth image, (b) blurred
image, (c) image deblurred using ground-truth kernel, and (d) image deblurred using blur kernel extracted from a light streak.

ferent view can also be used to support blur kernel estimation [4].
While multiple-image motion deblurring can produce high-quality
deblurred images, it is sometimes not applicable in practice due to
the lack of auxiliary images.

In single-image motion deblurring, Fergus et al. [5] used a varia-
tional Bayes approach that approximates the kernel directly without
the requirement for an approximated latent sharp image. In the al-
ternating optimization framework, Shan et al. [6] proposed a more
robust noise model based on image derivatives, and used variable
splitting to optimize the blur kernel and the latent image. Recently,
Cho et al. [7] proposed a fast motion deblurring method that works
in the gradient domain in order to save FFT computations. These
methods use a sparse prior to constrain the blur kernels and the la-
tent sharp images.

While previous approaches try to automate the entire motion de-
blurring process for general scenes, our approach utilizes additional
information that can be easily provided by the user. We observe that
motion-blurred images of scenes with distant point lights or specular
highlights often contain noticeable light streaks that may approxi-
mate the motion paths of the camera shake. Such information allows
us to directly obtain the blur kernel, without the need to perform ex-
pensive alternating optimization. In comparison to multiple-image
deblurring, we are similar in utilizing auxiliary information, but the
information comes directly from the blurred image itself. When
compared to single-image motion deblurring, our method can reduce
ill-posedness, due to the availability of extra information. Moreover,
our method can run much more quickly due to the avoidance of blur
kernel verification against the blur model.

According to [8], blur kernels estimated by Fergus et al. [5] are
more accurate than those obtained in the alternating optimization
framework. Therefore, in this paper, we compare the kernel pro-
duced by our method to the kernel produced by [5]. We also compare
our method to the state-of-the-art deconvolution by Shan et al. [6].

Moreover, while previous methods work well for shift-invariant
blur, it has been shown in [8] that the shift-invariant blur model is
often violated in practice. This has motivated recent research in
spatially-varying motion deblurring, which still remains a difficult
problem due to the very high ill-posedness. Thanks to the relatively
short computation time, our method can be used to interactively de-
blur different regions in a spatially-varying blurred image.

3. OUR METHOD

Our method can be summarized in two main steps. First, in the
blurred image, the user selects an image region that contains a light

streak. A small-scale L1-norm optimization is performed to produce
the blur kernel. In the second step, a non-blind motion deblurring is
performed using the blur kernel derived in the first step to produce
the final sharp image.

3.1. Light Streaks and Blur Kernels

Given a static, point-sized, bright object in the scene, the motion path
of the camera shake can be easily observed in the blurred image in
the form of a light streak. These bright objects must have intensities
much higher than other regions in their local neighborhoods so that
they can remain observable as bright light streaks even after being
smeared by motion blur.

To get a light streak that approximates the blur kernel well, it
is necessary that the bright object is tiny or stays far away from the
camera. For example, distant street lights can be regarded as point
lights and their light streaks in the blurred image are very similar to
the blur kernel. Very often, specular highlights can also be utilized
for the same purpose, as they are usually very small and bright.

3.2. Blur Kernel Extraction

Although the light streak is clearly visible in the user input region, it
has been blended with the scene background, and therefore is gen-
erally not accurate enough to produce a good deblurred result. The
main objective of this step is to sparsify the light streak to produce
a more accurate blur kernel, which is then used for the latent image
estimation.

Let P be the image patch selected by the user that contains a
light streak. In order to automatically produce the blur kernel from
patch P , a small-scale optimization to constrain the kernel sparsity
using L1-norm regularization is performed using the following cost
function:

E(K) = ‖L⊗K −G‖22 + λ‖K‖1, (2)

whereK is the blur kernel to be estimated, L a 3×3 Laplacian filter,
G = L⊗ P the pre-computed derivative of patch P , and λ a scalar
to control the sparseness of the kernel. The data term (the first term)
constrains the derivative of the blur kernel to be similar to the deriva-
tive of the given patch P , and the regularization term sparsifies the
blur kernel, which is known to be sparse. For easier implementation,
we use the Laplacian filter to compute the derivative of the kernel.
Our experiments have shown that replacing the Laplacian filter with
other derivative filters does not affect the result much.

Here we note that although shift-invariant motion blur model
is being employed, kernel estimation against the blurred image as



(a) Blurred image (b) Our result (c) Fergus et al. [5]

Fig. 3. Comparison with other deblurring methods.

in the previous methods has been avoided. The correctness of the
blur kernel now relies on the accuracy of the user selected region.
Of course, one can easily use our extracted blur kernel to initialize
the alternating optimization loop in traditional single-image motion
deblurring to accelerate its convergence. We present results from
this approach in Section 5.

3.3. Motion Deblurring

Following [7] for fast motion deblurring, the latent sharp image is
estimated by minimizing the following cost function:

E(I) =
∑
i

ωi‖∂iI ⊗K − ∂iB‖22 + λ‖∂iI‖22, (3)

where i = 0..5, ∂i ∈ {∂0, ∂x, ∂y, ∂xx, ∂xy, ∂yy} are the first and
second derivative filters, ωi the weight for each derivative, ‖∂iI‖22
the Tikhonov regularization to smooth the output image, and λ a
scalar value to control the degree of smoothness. The solution of the
minimization in Equation (3) can be computed quickly in closed-
form using FFT:

I = F−1

(
F (K) ◦ F (B) ◦∆

F (K) ◦ F (K) ◦∆ + λ

)
, (4)

where ∆ =
∑

i ωiF (∂i) ◦ F (∂i), function F (·) denotes FFT, ◦
denotes element-wise multiplication in the frequency domain, and z
is the complex conjugate of a complex number z.

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In our implementation, user can select an input region Ω that has
an arbitrary shape. Such flexibility helps to avoid selection of other
background pixels as much as possible. The square input patch P
has a size derived from the bounding box of Ω, and only pixels in Ω
are copied into P . The derivative of patch P is computed by con-
volving P with a 3× 3 Laplacian filter. To avoid boundary artifacts,
we set the derivative values at the boundary of Ω in P to zero.

The blur kernel optimization in Equation (2) is solved using the
L1-LS package [9]. The latent image estimation is implemented us-
ing the closed-form solution in Equation (4). We noticed that bound-
ary artifacts may occur due to the behavior of the FFT function in
MATLAB, which pads the image with zeros until the image size is
a power of two. We replicate the boundary values instead of zero-
padding to avoid such artifacts. For kernel extraction, we set λ in the
range of 0.0005 to 0.1, depending on the average intensity value of
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Fig. 4. Motion deblurring using the light streak of a LED. (a) Blurred
image, (b) image deblurred using extracted kernel, and (c) image
deblurred using kernel improved by alternating optimization.

the light streak selected by the user. As for latent image estimation,
we fixed λ to 0.1.

Our blur kernel extraction and latent image estimation run en-
tirely on the CPU in MATLAB. Table 1 presents the running times
of our examples on an Intel Core 2 Duo 2 GHz CPU with 4 GB of
RAM. For similar image and kernel sizes, previous motion deblur-
ring methods based on alternating optimization have running times
ranging from tens of minutes to hours, e.g., the result by Shan et
al. [6] in Figure 1.

In one of the experiments, we performed deblurring of a
synthetically-blurred image using our method. To generate a
synthetically-blurred image that contains light streaks, we manu-
ally marked a few specular highlights in the sharp image and scale
up their intensities by a few times to restore part of their actual
intensities in the real scene. The image was then convolved with a
synthetic kernel. We then manually selected an image region that
has one of the light streaks and used it for kernel extraction and
latent image estimation in our method. Figure 2 shows our result
compared to one that uses the ground truth kernel for deblurring.

We then tested our method using photos taken in both night and
day time. Light streaks in our photos are mostly from specular high-
lights or small light sources. Our results show that the latent sharp
images can be estimated accurately. Figure 1, Figure 3, and Figure 4
show our deblurring results using light streaks in both day and night
time scenes. For more deblurring examples, we refer the reader to
our website1.

Our method can produce results with quality comparable to that
of the best existing deblurring methods, such as [6] and [5]. Figure 1
and Figure 3 show the deblurring results from our method and from
the methods in [6] and [5]. Thanks to the specular highlights in
the image, we were able to recover the sharp image without going
through the slow kernel estimation process as in [6] and [5].

5. BLUR KERNEL VERIFICATION

The blur kernel extracted from a light streak in the blurred image
may sometimes be a crude approximation to the ground truth blur
kernel. For example, when the light streak is not thin enough, or

1http://www.comp.nus.edu.sg/˜huabinhs/deblur



(a) Blurred image (b) Details on the man (c) Blurred image (d) Details on the bus

Fig. 5. Interactive deblurring to reveal details in different regions of an image blurred by spatially-varying motion blur.

Size Time (sec.)
Figure Image Kernel A B Total

1. chek-jawa 1600× 1067 31× 31 11.58 21.98 33.56
2. frame2 1024× 683 33× 33 1.75 10.89 12.64
3. lyndsey2 1024× 1280 21× 21 5.90 22.03 27.93
4. tv 683× 1024 67× 67 12.20 10.55 22.75
5. bus 1024× 683 27× 27 1.98 10.83 12.81

35× 35 2.76 11.26 14.02

Table 1. Running times for our examples. A: kernel extraction time.
B: latent image estimation time.

when the blur kernel is extracted from a severely overexposed light
streak, the kernel values may be inaccurate.

The blur kernel accuracy can be improved by using the extracted
kernel and the deblurred image produced by our method to initialize
the alternating optimization. Given the extracted kernel K and the
deblurred image I solved from the blurred image B, the following
cost function can be used to optimize K:

E(K) = ‖I ⊗K −B‖22 + λ‖K‖1, (5)

where λ is a scalar to control the sparseness of the kernel. Only
new kernel values corresponding to non-zeros in the extracted ker-
nel are used to update the blur kernel. After the new kernel K is
computed, the deblurred image can be estimated using the image
deblurring method in Section 3.3. The blur kernel optimization and
the latent image estimation are alternately iterated until convergence.
Figure 4 shows an example where the deblurred image with kernel
optimization is sharper than the deblurred image with kernel directly
extracted from the blurred image.

6. SPATIALLY-VARYING MOTION DEBLURRING

Although we assume the shift-invariant blur model, our method
can be applied to interactively reveal local scene details in images
blurred by spatially-varying motion blur. We assume that in a local
neighborhood, the motion blur is shift-invariant. In order to reveal
details of the scene in a local region, a light streak in the region
is interactively selected for blur kernel estimation and latent image
estimation. Compared to traditional approaches, our method is more
convenient as no explicit image crop is required.

Figure 5 shows an example image that contains complex
spatially-varying blur. Two different kernels from two regions
are selected for deblurring, thus revealing details in the respective
regions.

7. DISCUSSION AND CONCLUSIONS

Motion deblurring using light streaks has a few caveats. Firstly,
the selected light streak may not come from a point light, causing
the blur kernel to be inaccurate. Similarly, the light streak may be
severely overexposed. Fortunately, our method is reasonably fast
enough to allow a few rounds of trial-and-error before a good de-
blurred image is obtained. Secondly, kernel verification is not per-
formed in our method in order to trade for user interactivity. This
may leave out chances to further optimize for higher kernel accuracy
and deblurred image quality.

For future work, we hope to develop an algorithm to automati-
cally detect good point light streaks. We are also interested in porting
our implementation to C/C++ to gain better speed.

In summary, we have proposed a motion deblurring method that
can use light streaks to approximate the blur kernels. As light steaks
occur commonly in both day and night time scenes, we believe our
method is useful for fast motion deblurring in practice.

8. REFERENCES

[1] Lu Yuan, Jian Sun, Long Quan, and Heung-Yeung Shum, “Im-
age deblurring with blurred/noisy image pairs,” in SIGGRAPH,
2007.

[2] Jia Chen, Lu Yuan, Chi-Keung Tang, and Long Quan, “Robust
dual motion deblurring,” in CVPR, 2008.

[3] Shaojie Zhuo, Dong Guo, and Terence Sim, “Robust flash de-
blurring,” in CVPR, 2010.

[4] Lu Yuan, Jian Sun, Long Quan, and Heung-Yeung Shum,
“Blurred/non-blurred image alignment using sparseness prior,”
in ICCV, 2007.

[5] Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis,
and William T. Freeman, “Removing camera shake from a sin-
gle photograph,” in SIGGRAPH, 2006.

[6] Qi Shan, Jiaya Jia, and Aseem Agarwala, “High-quality motion
deblurring from a single image,” in SIGGRAPH, 2008.

[7] Sunghyun Cho and Seungyong Lee, “Fast motion deblurring,”
in SIGGRAPH Asia, 2009.

[8] A. Levin, Y. Weiss, F. Durand, and W.T. Freeman, “Understand-
ing and evaluating blind deconvolution algorithms,” in CVPR,
2009.

[9] Seung-Jean Kim, K. Koh, M. Lustig, and S. Boyd, “An efficient
method for compressed sensing,” in ICIP, 2007.


