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Intrinsic Image Decomposition Using a Sparse
Representation of Reflectance
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Abstract—Intrinsic image decomposition is an important problem that targets the recovery of shading and reflectance components
from a single image. While this is an ill-posed problem on its own, we propose a novel approach for intrinsic image decomposition
using reflectance sparsity priors that we have developed. Our sparse representation of reflectance is based on a simple observation:
neighboring pixels with similar chromaticities usually have the same reflectance. We formalize and apply this sparsity constraint on
local reflectance to construct a data-driven second-generation wavelet representation. We show that the reflectance component of
natural images is sparse in this representation. We further propose and formulate a global sparse constraint on reflectance colors
using the assumption that each natural image uses a small set of material colors. Using this sparse reflectance representation and the
global constraint on a sparse set of reflectance colors, we formulate a constrained (;-norm minimization problem for intrinsic image
decomposition that can be solved efficiently. Our algorithm can successfully extract intrinsic images from a single image, without
using color models or any user interaction. Experimental results on a variety of images demonstrate the effectiveness of the proposed

technique.

Index Terms—Intrinsic image decomposition, Sparse reconstruction, Multi-resolution analysis

1 INTRODUCTION

NTRINSIC image decomposition addresses the prob-

lem of separating an image into its reflectance and
shading components. This decomposition of intrinsic
images is of importance in both computer graphics and
computer vision applications. First, the intrinsic decom-
position facilitates advanced image editing in graphics
applications such as re-texturing, re-colorization and re-
lighting. Second, the extracted intrinsic images benefit
many computer vision algorithms. Shading images are
preferred inputs to algorithms such as shape from shad-
ing while reflectance images can be used for tasks such
as segmentation and image white balance. Furthermore,
most vision algorithms from low-level image analysis to
high-level object recognition implicitly assume that its
input image is a reflectance image.

Typically, in intrinsic image decomposition, an input
image Z is modeled as a per-color-channel product of a
reflectance component R and a shading (or illumination)
component £, and the aim is to decompose Z into R and
L. In this paper, we process these components in the log
domain. Denote by I, R and L the logarithms of Z, R
and £, respectively. Thus, we are given:

I=R+1L

and wish to recover R and L. Therefore, recovering
the two intrinsic components from a single input image
remains a challenging problem because of its severely
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ill-posed nature: given an input image that is composed
from its reflectance and shading components, the num-
ber of unknowns is twice the number of equations. To
solve this problem, further constraints are needed.

In this paper, we propose two novel priors on re-
flectance for single image intrinsic image decomposition.
Our approach is based on the following two simple
observations:

o Two neighboring pixels that share similar chro-
maticities are likely to have similar reflectances.

o Natural images are usually dominated by a small
set of material colors.

The first observation describes a local sparseness on re-
flectance; similar local sparseness constraints have been
used in previous methods such as [1], [2]. From this ob-
servation on local reflectance, we apply multi-resolution
analysis (MRA) to construct a new data-driven second-
generation wavelet representation [3] of reflectance, so
as to convert what appears to be a local constraint
into a global constraint. We show that the reflectance
component of natural images is sparse in such a repre-
sentation, which leads to our first new prior, i.e., a global
sparse representation of reflectance. Using this wavelet
representation of reflectance, we formulate a constrained
{;-norm minimization problem for intrinsic image de-
composition to solve for the reflectance component. The
decomposition produced by our method is therefore the
global optimum of a convex optimization problem.

The second observation, that the set of reflectance
spectra in a natural image is sparse, draws from the work
of Omer and Werman [4]. It leads to our second new
prior which is formulated as a global sparsity constraint
on the set of reflectance colors that can be integrated into
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the earlier constrained ¢;-norm minimization problem.
We show that using this prior can improve the recovery
of the global structures of shading and reflectance, which
in turn leads to further improvements in our intrinsic
image decomposition.

The rest of the paper is organized as follows. Section 2
discusses related work. The new sparse priors are intro-
duced in Section 3, while the optimization framework
for performing intrinsic image decomposition using the
proposed priors is described in Section 4. Section 5
presents experimental results on various test images.
Finally, concluding remarks are presented in Section 6.

2 RELATED WORK

The problem of intrinsic image decomposition into re-
flectance and shading components was first introduced
by Barrow and Tenenbaum [5]. The reflectance compo-
nent describes the intrinsic albedo of a surface, which
is illumination-invariant. The shading component corre-
sponds to the amount of reflected light from the surface,
which depends on surface geometry, reflection function
and illumination condition.

Some previously proposed methods use additional
information from multiple images to resolve the inher-
ent ambiguities. For example, user registered images
captured under different illumination conditions can be
used [6], [7], [8]. The approach by Troccoli and Allen [9]
used a laser scan of the scene and multiple lighting and
viewing conditions to perform relighting and to estimate
reflectance.

To overcome the severely ill-posed nature of the prob-
lem, previous methods for intrinsic image decomposition
from a single image used either a strong prior or assump-
tion. Using the Retinex strategy, local derivatives can be
analyzed in order to distinguish between shading in-
duced and reflectance induced image variations [1], [2],
[10], [11], [12]. Training-based approaches have also been
proposed to classify image derivatives into reflectance
changes or shading changes [13], [14], [15]. With trained
classifiers, Tappen et al. obtained good decomposition
results from a single image by solving a global opti-
mization problem with belief propagation [14]. A major
drawback of these previous methods is that the decom-
position is analyzed locally within a small window. One
exception is the work of Shen et al. [16] which proposed
a global optimization algorithm incorporating both the
Retinex constraint and non-local texture constraint to
obtain global consistency of image structures.

More recently, a user-assisted method has been pro-
posed by Bousseau et al. [17]. Focusing on diffuse ob-
jects, they used the assumption that local reflectance
colors lie on a plane and derived a closed-form least
squares system which can be solved together with addi-
tional user-supplied constraints. Their method obtained
impressive results on the presented test images. How-
ever, the method requires precise user strokes and their
“color plane” assumption on local reflectance values is

incompatible with many practical cases such as multi-
color surfaces and gray-scale input images.

In contrast, our priors are independent of color models
on local surfaces. Furthermore, by using the two new
global sparse priors on reflectance, the proposed method
in this paper can automatically recover the intrinsic im-
ages from a single image without additional information.

Our method is partially inspired by the work of
Fattal et al. [18] on the construction of data-dependent
second-generation wavelets for edge-preserving image
processing. Different from first-generation wavelets con-
sisting of translates and dilates of a single pair of scal-
ing and wavelet functions, second-generation wavelets
allow them to change according to spatial particular-
ities of the data. The Lifting scheme first introduced
by Sweldens [3] is an efficient implementation of the
fast wavelet transform for constructing bi-orthogonal
wavelets through space. Fattal et al. [18] proposed the
edge-avoiding wavelets (EAW) constructed using a data-
prediction lifting scheme based on the edge content of
the input image. In this paper, we utilize the lifting
scheme [3] to construct a new data-dependent MRA
based on the local reflectance sparseness using the chro-
maticity information.

3 SPARSE PRIORS ON REFLECTANCE

In this section, we show how to derive the proposed
sparse representation of the reflectance component of
natural images from a simple local constraint on re-
flectance and formulate the global sparsity constraint of
reflectance based on the representation. We also present
the sparse prior on reflectance spectra and show how to
use that prior by introducing a total-variations-like cost
term.

3.1

3.1.1 Local Sparseness of Reflectance

Sparse Reflectance Representation

Our method is based on an observation of a local sparse-
ness of reflectance, where neighboring pixels of similar
chromaticity have similar reflectance. We can exploit
this observation to build a local sparse representation of
reflectance by minimizing the following cost function:

J(R) =3 ||RG) = > @RG)|| M)
i JEN; L
where R(i) is the RGB vector that represents the re-
flectance of pixel ¢ and N; is the set of neighboring pixels
of i. w;; is a set of normalized non-negative weights
which sum to one. This weight should be large when two
neighboring chromaticities are similar, and small when
they are different.
The normalized weight, w;}, is derived from a weight-

ing function, w;;. We define w;; based on the difference
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(b) Blue-Yellow: predict and update

Fig. 1. RBW construction; the “a” and “d” labels in the
boxes shows the locations of the approximation and de-
tail coefficients respectively. (a) illustrates the horizon-
tal/vertical lifting in the Red-Black stage. (b) illustrates the
diagonal lifting in the Blue-Yellow stage.

between two neighboring chromaticities normalized by
a local chromaticity variance:

0 if [C(i) — C()| > te
Wis = exp (—W) otherwise. @
where C(i) = R(i)/ ||R(¢)]| is the chromaticity of the re-
flectance at i, and o7 is the average chromaticity variance
across color channels in a local window of 5 x 5 pixels
and clipped such that it has a minimum value of 107*.
t. is a threshold of chromaticity difference. We set ¢. to
a small value (¢, = 0.02 in our experiments) so that the
weight only takes effect when chromaticities are very
similar, otherwise there is no dependence between the
pixels. For natural images, we can assume that there
always are neighboring pixels around a pixel that have
similar reflectance, i.e., Zje N, wij > 0. Later, we will
discuss the special case that all the neighboring pixels
have very different reflectance in Section 3.1.2.

Similar weighting functions based on intensity values
are used widely in image segmentation (e.g., [20], [21])
and colorization (e.g., [22], [23]) algorithms, where they
are usually referred to as affinity functions. In a twist from
previous methods, we use this formulation on chromatic-
ity values to enforce the local sparsity of reflectance.

3.1.2 Global Sparseness of Reflectance using Multi-
Resolution Analysis

To enforce the local reflectance sparseness constraint
introduced in Section 3.1.1 at a global level, we use
a multi-resolution analysis approach. We construct the
MRA using a data-prediction lifting scheme based on the

1: Input: Input image
2: Output: a”*, {dk}szl
3: initialize: a° < Input Image
4 for k< 0Oto K —1do
5: Do Red-Black Stage begin
6: Split: Decompose a* into the coarse data,
ag, , at locations CF, (red) and fine data, af, , at
locations F*% (black)
7: Predict: Use af; . to predict af,
8: for each i € F% do
9.
PG a0 - 3 a0 O
JEN;
10: end for
11: Update: Use d"! to update a;
12: for each i € Ck, do
13: 1
ag,, (i) « ag,, (i) + 3 > wytd ) @)
JEN;
14: end for
15: end
16: Do Blue-Yellow Stage begin
17: Split: Decompose ag, , into coarse data, ag, ,
at locations C’,’jy (blue), and fine data, a’}by, at locations
Ff, (yellow)
18: Predict: Use ag, to predict af,
19: for each i € F; do
20:
d* (i) = aly, () = Y wiag,, ()
JEN;
21: end for
22: Update: Use d**' to update ag,,
23: for each i € C}y do
24: 1
) ab, ()4 3 3 @)
JEN;
25: end for
26: end
27: end for

Fig. 2. Lifting scheme of forward weighted red-black
wavelet transform

chromaticity configurations of the input image. Follow-
ing [18], we utilize the red-black wavelets (RBW) which is
a lifting-based second-generation wavelet on rectangular
grids introduced by Uytterhoeven et al. [19].

RBW is a two-step lifting construction for 2D signals
that uses the quincunx lattices illustrated in Fig. 1. The
pixels are first split into the red and black subsets as
in Fig. 1. Each black pixel is predicted using the four
nearest red pixels, and the computed detail pixels, dFtt,
are stored at the black pixels. Then, the red pixels are
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(a)

(b)

updated using the computed detail coefficients stored
at the black pixel locations. The updated red pixels are
decomposed further into the blue and yellow subsets
as shown in Fig. 1. The yellow pixels are predicted
using their four diagonally-located neighbors at the blue
pixel locations, and the computed detail pixels, d**1,
are stored at the yellow pixels. Finally, the blue pix-
els are updated using the computed detail coefficients
stored at the yellow pixel locations, and the computed
approximation coefficients, a**!, are stored at the blue
pixels. Fig. 2 shows the lifting scheme of the forward
transform of the weighted red-black wavelets (WRBW).
By inverting each of these lifting steps, an image can be
reconstructed from the wavelet coefficients. We perform
K = |logy(min(w, h))| levels of decomposition, where w
and h are respectively the width and height of the image.

The predict and update steps of the Red-Black stage
are defined by Equation (3) and Equation (4) respec-
tively; the predict and update steps of the Blue-Yellow
stage are similar and only differ in the neighborhood
used. The multi-scale weights, @k, are normalized from
the weights computed using Equation (2) with the chro-
maticity information at every scale. At coarser scales,
the neighboring chromaticities around a pixel might be
significantly different; for such pixels, the normalized
weights, @k, are set to zero. It is interesting to note
that proposed set of wavelet weights actually contains
information about the chromaticity configurations of the
image at every scale.

By using the weighted scheme, the proposed wavelets
are designed with a support that is biased towards
neighboring pixels with similar chromaticity values.
At the predict step, the prediction operation is the
same as the term being summed in Equation (1). With
the weights used, the prediction of each reflectance
value would be weighted more towards neighboring
reflectance with similar chromaticity values leading to
most of the detail coefficients, {dk}le, being zero or
close to zero except at pixels where > . . wf; = 0.
At the update step, instead of merely preserving the
approximation average, the update of each reflectance
value is again weighted more towards neighboring re-

(d)
Fig. 3. (a) A synthetic image with 4 homogeneous regions. (b) RBW transform with equal weighting. (c) Proposed

WRBW transform; note that all the coefficients are 0 except for the top left corner as shown in the zoomed-in box. (d)
A 3D plot of the WRBW coefficients (across RGB).

flectance with similar chromaticity values. This can thus
be regarded as a chromaticity distribution preserving
down-sampling that attempts to keep local reflectance
values as close to each other as possible at each scale.
Overall, the WRBW transform is expected to lead to
sparse reflectance components due to the combination
of chromaticity distribution preserving down-sampling
and the chromaticity-based weighted prediction.

Fig. 3 illustrates the sparse nature of the proposed
WRBW representation for an image satisfying the local
sparseness constraint, where we use a synthetic im-
age with 4 homogeneous color regions with different
chromaticities. The detail coefficients are zero where
the input image is flat, resembling the transform re-
sults by the original RBW. Near the edges, since the
proposed wavelets are designed with a support that
avoids containing both the edge and the pixels with
different chromaticities, the wavelets response to such
edges diminishes. For this synthetic image, the coeffi-
cients obtained by the proposed WRBW transform are
all zero except the four approximation coefficients at the
coarsest level a’*. Compared to the RBW coefficients, our
WRBW coefficients show a stronger sparsity.

3.2 Sparse prior on reflectance component

We formulate a global sparse constraint on the re-
flectance component of natural images by using the
multi-scale representation described in Section 3.1.

We denote the WRBW forward transform operator by
B, and the backward transform operator by Bujl. Then,

the reflectance component of a natural image can be
represented in the wavelet domain as:

R=ByR

where R are the wavelet coefficients of the reflectance.
Recall from Equation (2) that when the chromaticities
of the neighboring pixels around a pixel are significantly
different, w;; = 0 for all neighbors; therefore, from Equa-
tion (3), ﬁ(z) stores the actual reflectance value at that
location and scale. When carrying out the initial wavelet
decomposition, we keep track of this set of locations,
I', where the chromaticities of neighboring pixels are
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(e) (f)

Fig. 4. lllustrate the physical meaning of the proposed
sparse prior on reflectance AR for a natural image. (a)
Original image.(b) Reflectance image. (c) and (d) A
and AR obtained by the proposed WRBW, respectively.
(e)and (f) AI and AR obtained by the EAW transform,
reprectively

significantly different. For convenience, we will denote
the complement of T as T'. For coefficients not in T, i.e.,
in T, the neighboring pixels have similar chromaticities,
and R(i) stores the local reflectance difference.

Assuming that the observation of local reflectance
sparsity holds, most of the coefficients of R(i) in T
should be zero or close to zero. Hence, we formulate
the sparse constraint on reflectance component by min-
imizing the following cost term:

E, = HAE’

; ®)
1
where A is a diagonal weighting matrix for ]?(?) with
diagonal entries given by:
A= {1 iel,
' €

otherwise,

where ¢ is a small value we set as 107 in our imple-
mentation.

To illustrate the psychical meaning of the proposed
sparse prior on reflectance for a natural image, we
used the “box” example from the MIT intrinsic image
database [24]. This is shown in Fig. 4. We perform the
WRBW on both the original image and the reflectance
image using the same set of the weights that was com-
puted using the chromaticity information of the original
image. The WRBW coefficients obtained from the origi-
nal and reflectance images, AT and AR, respectively, are
shown in Fig. 4(c) and (d). For comparison, we show the
AI and AR obtained by using the EAW transform pro-
posed by Fattal [18]. The EAW transform is similar to the
proposed WRBW transform except that their weights are
computed from the color intensities of the original image
while our weights are computed using the chromaticity
information based on the local reflectance sparseness.
We can see that Al obtained by our WRBW transform
actually contains the shadow information of the original
image. However, the EAW coefficients Al have not such
a nature.

3.3 Sparse prior on reflectance spectra

The second prior comes from an additional constraint
that the total number of reflectance values (or colors) is
small within each image. Omer and Werman [4] have
shown that scenes are dominated by a small number
of material colors. In other words, the set of reflectance
spectra is sparse.

We formulate the constraint on having a sparse set
of reflectance spectra by applying a total variations-
like cost on the set of reflectance coefficients within the
image in I' (see Section 3.2). We denote the cardinality
of I' by M = |I'|. Let T be the operator that computes
all % differences between the reflectance values
found in the locations stored in I'. In other words, 7 is
a sparse matrix, with one row for each possible combi-
nation of indices in I' that corresponds to computing the
difference between the reflectance values at the indices.
For example, if the kth combination is between index 4
and j, then 7; = 1 and 7; = —1. We would use the
prior of TR being sparse by minimizing the following
cost term:

B, = HTJ?H . ©)
1

To reduce the number of operations when computing
the term TIA{, we trim the number of entries by removing
the constraint for pairs of coefficient positions in I' that
are likely to have different reflectance values. We do so
by first computing the forward weighted RBW on the
original image. Then, a constraint between 2 locations 4
and j in I' is added only if the square difference between
the normalized coefficient values (across color channels)
is smaller than a threshold, ¢,,. In our experiments, we
use t, = 1074,
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4 INTRINSIC IMAGE DECOMPOSITION

In this section, we will show how we can use the two
sparse priors introduced in Section 3 for intrinsic image
decomposition by formulating an appropriate optimiza-
tion problem. We also present a method for further
refinement of the decomposition using a matting-based
approach.

4.1 Optimization

Assuming that the illumination component changes
smoothly over the scene, we can apply a smoothness
constraint on L by adding a Laplacian-based cost at all

locations:
Esmooth = Z ”AL(Z)”2

where A denote the Laplacian operator. This smoothness
regularization of L both ensures that every pixel has an
equation that constrains it and controls the smoothness
of the illumination component.

We substitute L by I — R and express this smoothness
constraint on the illumination with the following cost
term:

Esmooth = ”AL”2
12
- HAI—AB;lRH .

The smoothness constraint can be considered to be a set
of measurements on the reflectance coefficients, i.e.,

yzAE

where
A=AB,' and y = AT ?)

If surfaces in the scene are diffuse or near-diffuse, we can
assume that the input image chromaticity is the same as
the reflectance chromaticity. The weights of the WRBW
transform are thus computed according to Equation (2)
using the chromaticity of the input image.

To recover ]§, we would solve the following con-
strained ¢;-norm minimization problem by using the
sparse reflectance representation prior from Equation (5)
together with the smoothness constraint on illumination:

min HAEH st. AR = Y
R 1

This optimization problem can be solved using an /-
regularized least-squares solver, e.g., [25], [26] by re-
writing the optimization problem as:

mAinHA}A%—yH2+/\HA}A%H @®)
B 2 1

where ) is a regularization parameter.

Further including the sparse prior on reflectance spec-
tra from Equation (6) , we obtain the following optimiza-
tion:

w7 off 3] 7]

)
1

Fig. 5. Separation results illustrating soft matting refine-
ment for “paper2” image. (a) Original image. (b) Before
refinement (zoom-in of yellow box). (c) After refinement
(zoom-in of yellow box).

where 11 is an additional regularization parameter.

We note here that we can take advantage of the
fact that the A and AT operators can be implemented
efficiently without the need to perform full matrix mul-
tiplication. The inverse WRBW transform, B!, can be
computed using wavelet lifting, while the inverse dual
WRBW transform, B, 1T, can also be computed using
wavelet lifting by switching the order of the predict and
update steps and manipulating the weights used. More-
over, the Laplacian operator, A, can be implemented as
an image filter.

4.2 Soft matting

Small changes in the reflectance component that are co-
located with those in the chromaticity component, which
could be caused by phenomena such as color bleeding,
could be wrongly assigned to the shading component
since the local color sparsity constraint described in Sec-
tion 3.1.1 is no longer valid. Here, we apply a refinement
process to solve this problem.

We first express each intrinsic component as the prod-
uct between a scalar intensity, » = ||R|| or | = |||, and
a chromaticity, R, = R/r or L. = L/I:

I=rR,+IL..

Denoting o = r/(r +1), we express the intensity value at
each pixel as a mixture of two values weighted by a:

I=aR.+(1—-a)L.

where R. = (r + )R, and L. = (r +[)L.. Therefore, we
can apply a closed-form framework of matting [27] to
refine the separation. To do so, we first perform an initial
decomposition by solving one of the two optimization
problems presented earlier in Eqns. (8) and (9). We then
compute an initial value of «, denoted by «, at the pixels
from edges in the decomposed image, and propagate «
on those edges using the matting Laplacian algorithm of
Levin et al. [27]. Rewriting a(x) and a(x) in their vector
forms, we minimize the following cost function:

J(@)=a"Sa+ (a—a)'G(a—a)



JOURNAL OF IATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

© ' )

Fig. 6. Separation results illustrating soft matting refine-
ment for a flower image. (a) Input image. (b) Separation
results before matting refinement. (d) Separation results
after matting refinement. (c) Zoomed-in reflectance re-
sults within the yellow box (Left: before refinement; Right:
after our matting refinement).

where G is a diagonal matrix of weights. We set G;; =0
when pixel ¢ is at an edge, and G;; = 100 otherwise.
The matrix ¥ is the matting Laplacian matrix [27]. The
optimal « can be obtained by solving the following
sparse linear system: (X 4+ G)a = Ga.

The derivation of the matting Laplacian matrix in [27]
is based on a color line assumption, i.e, within a small
window, foreground (backround) colors lie on a straight
line in color space. Since this assumption still holds for
natural shading/reflectance images, it is also valid to use
the matting Laplacian matrix in intrinsic images. Fig. 5
shows the results of matting refinement for the “paper2”
example. We can see that the “ghost” markings in the
shading component are reduced. Fig. 6 shows the refined
results for a flower image. As we can see, the “ghost”
markings in the shading component are reduced, such
as that within the red rectangle. Fig. 6(c) shows the
zoomed-in reflectance component within the yellow rect-
angle where the block artifacts in the reflectance are
suppressed after applying the matting refinement.

5 EXPERIMENTAL RESULTS

In this section, we provide various experimental vali-
dation of the proposed method. We first evaluate the
performance of our method on a benchmark dataset with
known ground truth [24]. Then, we compare our method
with the user-assisted approach of [17].

In the experiments!, we test two variations of the
proposed intrinsic image decomposition algorithm. First,
we only use the sparsity constraint on the reflectance
representation in the algorithm which solves (8); this

1. In the paper, all the separation results are shown in AI9amma
with gamma correction = 1, and A is a scale

TABLE 1
LMSE for CR, SR and SRC over the MIT Intrinsic Images
dataset

Example LMSE

CR SR SRC
box 0.013 0.0036 0.0018
cupl 0.007 0.0043 0.0030
cup2 0.011 0.0052 0.0045
deer 0.041 0.0413 0.0419
dinosaur 0.035 0.0317 0.0216
frogl 0.066 0.0558 0.0483
frog2 0.071 0.0587 0.0472
panther 0.011 0.0075 0.0078
paperl 0.004 0.0019 0.0014
paper2 0.004 0.0027 0.0021
raccoon 0.015 0.0052 0.0048
sun 0.003 0.0024 0.0023
squirrel 0.072 0.0856 0.0794
teabagl 0.032 0.0280 0.0280
teabag?2 0.023 0.0151 0.0141
turtle 0.069 0.0349 0.0174
Average 0.030 0.0240 0.0204

will be referred to as SR. Then, we use both the global
sparsity constraints on the reflectance representation and
reflectance colors which solves (9); this will be referred
to as SRC. In our implementation, we use the fast
Nesta method [26] for both SR and SRC to solve the
constrained ¢;-norm minimization problem.

5.1 Benchmarking Results on MIT Intrinsic Images
Dataset

A benchmark dataset with ground-truth (GT) was pre-
sented in [24] for performance evaluation of intrinsic im-
age algorithms. We test our methods, SR and SRC, with
this dataset. Following [24], we use local mean squared
error (LMSE) from the ground truth to measure de-
composition quality. We compare with the conventional
color Retinex algorithm (CR) [12], which performed best
among single image based methods in the study of [24].
All the separation results of our methods here are before
the refinement process. The LMSE values? used for com-
parisons are computed using the color retinex algorithm
made available by the MIT Intrinsic Images dataset [24].

This dataset contains three categories: artificially
painted surfaces, printed objects, and toy animals. We
display one example from each category in Table 2.
With conventional Retinex constraints, pixels that con-
tain significant reflectance derivatives should be smooth
in shading. Using the local constraint, the CR method
correctly identifies most of the markings as reflectance
changes. However, it leaves some “ghost” markings in
the shading and some residues of the cast shadows
in the reflectance images because the sharp edges con-
tain a mixture of large and small image radiances. In
contrast, SR eliminate many of these ghost because by
using multi-resolution analysis, our method enforces the

2. Some of the computed values could be slightly different from that
presented in [24] because of the convergence algorithm.
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Decomposition results by Color Retinex and our prop?é?&iithods on three images from the MIT intrinsic dataset
Example Raccoon Cupl Turtle
Input
GT
CR
LMSE = 0.069
SR
LMSE = 0.0052 LMSE = 0.035
SRC @{jm\i
LMSE = 0.0048 LMSE = 0.0030 LMSE =0.0174

()

|
(e)

Fig. 7. Reflectance recovered using CR, SR and SRC on the “turtle” image. (a) CR. (b) SR. (c) SRC. (d) Zoom-in of
yellow patch for CR, SR and SRC (left to right). (e) Zoom-in of red patches for CR, SR and SRC (left to right).

(d)
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(b)

(d)

Fig. 8. Intrinsic image decomposition results for the “box” image. (a) Input image. (b-c) Separation results using SR
(LMSE = 0.003606). (d-e) Separation results using SRC (LMSE = 0.001835)

(a)

(d)

Fig. 9. Intrinsic image decomposition results for the “paper1” image. (a) Input image. (b-c) Separation results using
SR (LMSE = 0.001871). (d-e) Separation results using SRC (LMSE = 0.001395)

(a) (b)

(c)

(d) (e)

Fig. 10. Example of failure of the local sparseness of reflectance assumption in the “cup2” image. Note that in this
case, there exists intensity change with constant hue which corresponds to a change in reflectance and not shading.
(a) Input image. (b-c) Separation results of CR method (LMSE = 0.011). (d-e) Separation results of our SRC method

(LMSE = 0.0045)

sparse constraint on neighboring reflectance at every
scale. The constraint on the multi-resolution representa-
tion broadens the influence of local cues to help resolve
the ambiguous local inferences.

The “turtle” image in Table 2 is challenging for the
CR method. The shell of the turtle exhibits big variations
in shading and shadows that arise from the 3D weave
pattern. With only local cues, CR misses much of the
global and local shading structure in the recovered shad-
ing image because the algorithm misinterprets many
image gradients as purely reflectance changes due to the
large color differences. In contrast, SR can better handle
the gradual shading change across the image as well as
the local shading variations, and accurately recovers the
shape of the shell surface. This difference can be more
clearly seen in the closeup of a small shell region in
Fig. 7(d).

To illustrate the benefit of the global sparsity constraint
on reflectance color, we also compare the results obtained
with the SRC method in Fig. 7. As shown in Fig. 7, the
forequarter and hindquarter of the turtle are two distinct
regions. In the decomposition with SR and CR, shading
and reflectance in each of these regions are computed
separately, which results in recovered reflectances that
are inconsistent, as seen in Fig. 7(a) and (b). With the
non-local sparse constraint on reflectance colors, the
recovered reflectance with SRC has a smaller set of
reflectance values, which leads to a more consistent
decomposition as shown in Fig. 7(c). This can be seen
more clearly for a closeup of the small regions on the two
feet Fig. 7(e). With this global constraint on reflectance
colors, the SRC method can correctly recover the global
shading and reflectance structure that cannot easily be
inferred using local cues alone.
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Fig. 8 and 9 show two other examples where SRC
effectively eliminates cast shadows on the surfaces from
the reflectance. Chromaticity values might change in
dark regions caused by cast shadows. Since the proposed
WRBW is designed with a support that avoids pixels
with different chromaticities, the wavelets response to
such edges would be diminished. In the decomposition
with SR, shading and reflectance in these shadow regions
are thus computed separately from the neighboring
regions, which results in the inconsistent reflectances
as shown in Fig. 8(b) and Fig. 9(b). With the sparse
constraint on reflectance colors, the reflectance values
recovered by SRC in these regions are more similar to
the ones which are not in shadows. The proposed SRC
method can better deal with this problem, and more
accurately removes the cast shadow found inside the box
in Fig. 8(d) and the shadow at upper right in Fig. 9(d).

Quantitative comparisons on all the dataset images are
provided in Table 1 where we compared the LMSE of
CR and our proposed methods, SR and SRC. The SR
method outperforms CR for most of the objects and
the SRC method generally has the best performance.
However, CR outperforms our proposed methods on a
few examples, “deer”, and “squirrel”. This is a result
of our assumption on the local sparseness of reflectance
being invalid. Fig. 10 exemplifies the problem with the
proposed methods on the “cup2” image. There are some
places on the cup surface where neighboring pixels
with similar chromaticities have different reflectance,
and that is where our methods fail to properly separate
reflectance and shading. For the cup2 example, even
though the local sparsity prior is invalid for these places,
the separation results of our method are still better then
the ones of the color retinex method.

5.2 Comparison with user-assisted approaches

Here, we compare our method with that of Bousseau
et al. [17], which uses the following global constraints
provided by a user: sets of pixels with similar reflectance,
sets of pixels with similar illumination, and locations and
shading values of pixels with known illumination.

Accurate decomposition results can be achieved by us-
ing the global constraints of shading and reflectance pro-
vided in the form of user scribbles. However, users may
not always provide useful scribbles. Fig. 11(a) shows
the decomposition results with ground truth scribbles,
which has a LMSE of 0.00055. To simulate the effect
of having inaccurate scribbles, we used scribbles with
the same fixed illumination values as before but with
positions that are randomly perturbed by up to 15 pixels;
the result is shown in Fig. 11(b), with a LMSE of 0.0011.
The result of our proposed method without any user
interaction is shown in Fig. 11(c), which has a LMSE of
0.0015.

Fig. 12 shows further comparisons with the method
proposed by Bousseau et al. In Fig. 13, we show the
zoomed-in separation results for the cloth example. We

10

can see that Bouseau’s method leaves some “ghost”
markings in the shading (c) and some residues of the
cast shadows in the reflectance component (d). Fig. 14
shows the comparison with Tappen et al.’s work [15]
and Bousseau et al.’s. We also compare our method
with Tappen et al’s method [14] for a gray-scale image
example in Fig. 15. For gray-scale images, we compute
the WRBW using pixel intensity. It is evident that our
technique can generate visually comparable results from
a single image without any additional information.

6 CONCLUSION

In this paper, to address the problem of intrinsic image
decomposition, we have proposed two new sparse priors
on reflectance: a data-driven sparse representation of
reflectance and a global sparse constraint on reflectance
colors. Combining the two sparse priors, we can ef-
fectively decompose a single image into its intrinsic
components.

A sparse representation is made possible by using
data-dependent weighted wavelets constructed based on
the local sparsity constraint on reflectance. At the same
time, the constructed weighted wavelet also preserves
chromaticity distribution even at coarse scales. By us-
ing a multi-resolution representation of reflectance and
applying reflectance weighting to enforce the sparsity
constraint at multiple scales, we can convert what ap-
pears to be a local constraint into a global constraint.
We also apply a global assumption that the number of
different reflectance colors in the image is small through
the use of a total-variations-like cost term. The decom-
position problem is formulated as a constrained ¢;-norm
minimization problem, and the proposed approach seeks
to recover the sparse reflectance signal given smooth-
ness constraints on the illumination component. We also
discussed the color bleeding problem in the decomposi-
tion with the proposed method. Small changes in the
reflectance components could be wrongly assigned to
the shading component. We solve this problem by using
a soft matting method based the color line assumption
which holds for natural shading and reflectance images.

The optimization formulation effectively broadens the
influence of local information to help resolve ambiguous
local inference and our experimental results show that
the decomposition significantly benefits from the global
constraints.
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Fig. 12. Comparison with the user-assisted approach of Bousseau et al. [17].

(a) Right to left: Bousseaus' and our results (b) Right to left: Bousseaus' and our results

Fig. 13. We zoom into the separation results for details of the yellow and red patches of the cloth example.
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