

Established in collaboration with MIT

Problem:

- \succ Reconstruction of 3D objects from multi-view RGB/RGB-D data.
- > Issues: The reconstructed objects often appear in incomplete situation

- ➢ Reasons:
- Depth may be missing when multi-view RGB-D data is employed, e.g. SLAM
- □ Matching of the RGB data in structure-from-motion based reconstruction methods could not be done accurately for objects of uniform colours

Contributions:

- > An Markov Random Field (MRF) model to represent 3D shapes in multiple viewpoints
- \succ A new formulation for shape repairing via maximum a posteriori (MAP) estimation in the MRF model.
- > An efficient inference method for approximation of MAP estimation using variational mean field approach.
- > A new 3D object dataset including objects present in different levels of incompleteness. Compared with existing datasets, our dataset is enriched to include 3D models, 2D images and 2D-3D correspondences.

A Field Model for Repairing 3D Shapes

Duc Thanh Nguyen^{1,2}, Binh-Son Hua², Minh-Khoi Tran², Quang-Hieu Pham², and Sai-Kit Yeung²

¹School of Information Technology, Deakin University, Australia ²Singapore University of Technology and Design, Singapore

MRF Model

Multi-view RGB data

> The pairwise priors capture local geometric structures of a shape and can be learnt from 3D templates using a convolutional deep belief network (CDBN).

$$p(L) = \frac{1}{Z} \prod_{(v_i, v_j) \in E} \Psi_{ij}(l_i, l_j) \prod_{v_i \in V} \Psi_{ij}(l_i, v_j) \prod_{v_i \in V} \Psi_{ij}(l_$$

3D distance transforms are used to compute

> The likelihoods are constructed from multi-view RGB data to capture the consistency of 3D points in various viewpoints.

 $p(v_i|l_i) = \exp\left|\frac{-\gamma}{|I_i|}\sum_{j=1}^{r} d(h_{R(x_{i,j})}, h_{R(x_{i,j+1})})\right|$

Foreground voxel

Free space voxel

Experiments:

Dataset

objects

Evaluation and comparison

Inaccuracy: #points/voxels added wrongly

Incompleteness:

#points/voxels missed

 \succ A new 3D object dataset including 77 (complete) objects is created. Each object is degraded at 9 different levels (10% - 90%) \rightarrow 693

- Degraded objects