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A Robust 3D-2D Interactive Tool for Scene
Segmentation and Annotation
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Abstract —Recent advances of 3D acquisition devices have enabled large-scale acquisition of 3D scene data. Such data, if completely
and well annotated, can serve as useful ingredients for a wide spectrum of computer vision and graphics works such as data-driven
modeling and scene understanding, object detection and recognition. However, annotating a vast amount of 3D scene data remains
challenging due to the lack of an effective tool and/or the complexity of 3D scenes (e.g. clutter, varying illumination conditions). This
paper aims to build a robust annotation tool that effectively and conveniently enables the segmentation and annotation of massive
3D data. Our tool works by coupling 2D and 3D information via an interactive framework, through which users can provide high-level
semantic annotation for objects. We have experimented our tool and found that a typical indoor scene could be well segmented and
annotated in less than 30 minutes by using the tool, as opposed to a few hours if done manually. Along with the tool, we created a
dataset of over a hundred 3D scenes associated with complete annotations using our tool. Both the tool and dataset are available at
http://scenenn.net.
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1 INTRODUCTION

H IGH-quality 3D scene data has become increasingly
available thanks to the growing popularity of consumer-

grade depth sensors and tremendous progress in 3D scene
reconstruction research [1], [2], [3], [4], [5], [6]. Such 3D
data, if fully and well annotated, would be useful for powering
different computer vision and graphics tasks such as scene
understanding [7], [8], object detection and recognition [9],
and functionality reasoning in 3D space [10].

Scene segmentation and annotation refer to separating an
input scene into meaningful objects. For example, the scene
in Fig. 1 can be segmented and annotated into chairs, table,
etc. Literature has shown the crucial role of 2D annotation
tools (e.g. [11]) and 2D image datasets (e.g. [12], [13], [14])
various tasks like semantic segmentation, object detection and
recognition [15], [16]. This inspires us for such tasks on 3D
scene data. However, segmentation and annotation of 3D scenes
require much more effort due to the large scale of the 3D data
(e.g. there are millions of 3D points in a reconstructed scene).
Development of a robust tool to facilitate the segmentation and
annotation of 3D scenes thus is a demand and also the aim of
this work. To this end, we make the following contributions:

� We propose an interactive framework that effectively cou-
ples the geometric and appearance information from multi-
view RGB data. The framework is able to automatically
perform 3D scene segmentation.
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� Our tool is facilitated with a 2D segmentation algorithm
based on 3D segmentation.

� We develop assistive user-interactive operations that allow
users to �exibly manipulate scenes and objects in both
3D and 2D. Users co-operate with the tool by re�ning
the segmentation and providing semantic annotation.

� To further assist users in annotation, we propose an
object search algorithm which automatically segments
and annotates repetitive objects de�ned by users.

� We create a dataset including over a hundred scenes. All
the scenes are fully segmented and annotated using our
tool. This dataset will serve as a benchmark for future
works in 3D computer vision and graphics.

Compared with existing works on RGB-D segmentation and
annotation (e.g. [17], [18]), our tool holds several advantages.
First, segmentation and annotation are centralized in 3D and
thus free users from manipulating thousands of images. Second,
the tool can adapt with either RGB-D images or scene triangular
meshes as the input. This enables the tool to handle meshes
reconstructed from either RGB-D images [19] or structure-
from-motion [20] in a uni�ed framework.

We note that interactive annotation has also been exploited
in a few concurrent works, e.g. SemanticPaint in [21] and
Semantic Paintbrush in [22]. Compared with those systems,
our annotation tool offers a wider range of interactions. In
addition, the tool also provides more assistive functionalities,
e.g. 3D object search, 2D segmentation.

2 RELATED WORK

RGB-D Segmentation.A common approach for scene seg-
mentation is to perform the segmentation on RGB/D images.
Examples of this approach can be found in [17], [18], [23].
The spatial relationships between objects can also be exploited
to infer the scene labels. For example, Jia et al. [24] used
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Fig. 1. A reconstructed 3D scene segmented and annotated using our tool.

object layout rules for scene labeling. The spatial relationship
between objects was modeled by a conditional random �eld
(CRF) in [25], [26] and directed graph in [27].

In general, the above methods segment RGB/D images
captured from single viewpoints of a 3D scene individually
while the segmentation of an individual image may not be
reliable and incomplete. Compared with those methods, our
tool can achieve more accurate and complete segmentation
results with the 3D models of the scene and its objects.

From 2D to 3D. Labeling a 3D scene can be performed by
back-projecting the labels obtained on the 2D images of that
scene to 3D space. For example, Wang et al. [28] used the
labels provided in ImageNet [12] to infer 3D labels. In [3],
2D labels were obtained by drawing polygons.

Labeling directly on images is time consuming. Typically, a
few thousands of images need to be handled. It is possible
to perform matching among the images to propagate the
annotations from one image to another, e.g. [3], but this
process is not reliable.

3D Object Templates.3D object templates can be used to
segment 3D scenes. The templates can be organized in holistic
models, e.g., [29], [30], [31], [32], or part-based models, e.g.
[33]. The segmentation can be performed on 3D point clouds,
e.g. [29], [31], [33], or 3D patches, e.g. [32], [30], [34].

Generally speaking, the above techniques require the
template models to be known in advance. They do not �t well
our interactive system in which the templates can be provided
on the �y by users. In our tool, we propose to use shape
matching to help users in the segmentation and annotation
task. Shape matching does not require off-line training and is
proved to perform ef�ciently in practice [35].

Online Scene Understanding.Recently, there are methods that
combine 3D reconstruction and annotation to achieve online
scene understanding. For example, Tateno et al. [36] proposed
to segment depth images and fuse the segmentations incremen-
tally into a SLAM framework. SemanticPaint developed in
[21] allowed users annotate a scene by touching objects. The
SemanticPaint was extended to the Semantic Paintbrush [22]
for outdoor scenes annotation by exploiting the farther range
of a stereo rig.

In both [21] and [22], objects of interest were identi�ed by

touching and the corresponding object classes were modeled by
CRFs. These methods used voxel-based TSDF representation
rather than triangle mesh (as our approach) to represent objects
and implicitly assumed that all objects of the same class have
similar appearance (e.g. color). Since the CRFs were built upon
the reconstructed data, there also assumed the reconstructed
data was good enough. However, reconstructed scenes are often
incomplete. To deal with this issue, we describe 3D objects
using a shape descriptor which is robust to shape variation and
occlusion. Experimental results show that our approach works
well under noisy data (e.g. broken mesh) and robustly deal
with shape deformation while being ef�cient for practical use.

3 SYSTEM OVERVIEW

Fig. 2 shows the work�ow of our tool. The tool includes four
main stages: scene reconstruction, automatic 3D segmentation,
interactive re�nement and annotation, and 2D segmentation.

In the �rst stage (section 4), the system takes a sequence
of RGB-D frames and reconstructs a triangular mesh, called
3D scene mesh. We compute and cache the correspondences
between the 3D vertices in the reconstructed scene and the
2D pixels on all input frames. This allows seamless switching
between segmentation in 3D and 2D in later steps.

In the second stage (section 5), the 3D scene mesh is
automatically segmented. We start by clustering the mesh
vertices into supervertices (section 5.1). Next, we group the
supervertices into regions (section 5.2). We also cache the
results of both steps for later use.

The third stage (section 6) is designed for users to interact
with the system. We design three segmentation re�nement
operations:merge, extract, andsplit. After re�nement, users
can make semantic annotation for objects in the scene.

To further assist users in segmentation and annotation of
repetitive objects, we propose an algorithm to automatically
search for repetitive objects speci�ed by a template (section 7).
We extend the well-known 2D shape context [35] to 3D space
and apply shape matching to implement this functionality.

The fourth stage of the framework (section 8) is designed
for segmentation of 2D frames. In this stage, we devise an
algorithm based on contour matching that uses the segmentation
results in 3D to initialize the 2D segmentation.
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Fig. 2. Overview of our annotation tool.

4 SCENE RECONSTRUCTION

4.1 Geometry reconstruction

Several techniques have been developed for 3D scene re-
construction. For example, KinectFusion [37] applied frame-
to-model alignment to fuse depth information and visualize
3D scenes in real time. However, KinectFusion tends to
cause drift where depth maps are not accurately aligned
due to accumulation of registration errors over time. Several
attempts have been made to avoid drift and led to signi�cant
improvements in high-quality 3D reconstruction. For example,
Xiao et al. [3] added object constraints to correct misaligned
reconstructions. In [38], [4], [39], the input frames were
split into small chunks, each of which could be accurately
reconstructed. An optimization was then performed to register
all the chunks into the same coordinate frame. In many systems,
e.g. [40], re-visiting places are used to trigger a loop closure
constraint to enforce global consistency of camera poses. In
[41], loop closure was enabled by splitting the scene into
submaps. The information from every single image frame was
accumulated into the submaps and the position and orientation
of the submaps were then adjusted accordingly.

In our system, we adopt the method in [4], [19] to calculate
camera poses. The triangular mesh then can be extracted using
the marching cubes algorithm [42]. The normal of each mesh
vertex is given by the area-weighted average over the normals of
its neighbor surfaces. We further smooth the resulting normals
using a bilateral �lter.

4.2 3D-2D Correspondence

Given the reconstructed 3D scene, we align the whole sequence
of 2D frames with the 3D scene using the corresponding camera
poses obtained from section 4.1. For each 3D vertex, its normal
is computed on the 3D mesh and color is estimated as the
median of the color of the corresponding pixels on 2D frames.

5 SEGMENTATION IN 3D
After the reconstruction, a scene mesh typically consists of
millions of vertices. In this stage, those vertices are segmented
into much fewer regions. Directly segmenting millions of
vertices is computationally expensive and requires a lot of
computer resources. To avoid this, we perform a two-level

segmentation. At the �rst level, we divide the reconstructed
scene into a number of so-called supervertices by applying a
purely geometry-based segmentation method. At the second
level, we merge the supervertices into larger regions by
considering both surface normals and colors.

5.1 Graph-based Segmentation

We extend the ef�cient graph-based image segmentation
algorithm of Felzenszwalb et al. [43] to 3D space. We have
also tried with normalized cuts [44] and found that graph-based
segmentation worked more stably and faster. In addition, graph-
based segmentation is often selected for scene segmentation,
e.g. in [45]. However, we note that other existing superpixel
methods [46] could also be considered for this task.

The graph-based segmentation algorithm operates as follows.
Given the scene mesh, a graph is de�ned in which each node in
the graph corresponds to a vertex in the mesh. Two nodes in the
graph are linked by an edge if their two corresponding vertices
in the mesh are the vertices of a triangle. LetV = f v i g be the
set of vertices in the mesh. The edge connecting two vertices
v i andv j is weighted as

w(v i ; v j ) = 1 � n i
> n j ; (1)

wheren i andn j are the unit normals ofv i andv j respectively.
The graph-based segmenter in [43] employs a number of

parameters including a smoothing factor used for noise �ltering
(normals in our case), a threshold representing the contrast
between adjacent regions, and the minimum size of segmented
regions. In our implementation, those parameters were set to
0.5, 500, and 20 respectively. However, we also make those
parameters available to users for customization.

The graph-based segmentation algorithm results in a set
of superverticesS = f si g. Each supervertex is a group
of geometrically homogeneous vertices with similar surface
normals. The bottom left image in Fig. 2 shows an example
of the supervertices. More examples can be found in Fig. 9.

5.2 MRF-based Segmentation

The graph-based segmentation often produces a large num-
ber (e.g. few thousand) supervertices, which could require
considerable effort for annotation. To reduce this burden, the
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supervertices are clustered into regions via optimizing an MRF
model. In particular, for each supervertexsi 2 S, the color
and normal ofsi , denoted as�ci and �ni , are computed as the
means of the color values and normals of all verticesv 2 si .
Each supervertexsi 2 S is then represented by a nodeoi in
an MRF. Two nodesoi andoj are directly connected ifsi and
sj share some common boundary (i.e.si andsj are adjacent
supervertices). Lettingl i be the label ofoi , the unary potentials
are de�ned as

 1(oi ; l i ) = � logGc
i (�ci ; � c

l i
; � c

l i
) � logGn

i (�ni ; � n
l i

; � n
l i

); (2)

whereGc
l i

andGn
l i

are the Gaussians of the color values and
normals of the label class ofl i , and� c

l i
=� n

l i
and � c

l i
=� n

l i
are

the mean and covariance matrix ofGc
l i

=Gn
l i

. The means and
covariance matrices are computed based on the current labels
and updated accordingly during the labeling process.

For the pairwise potentials, we use the Potts model [47]

 2(l i ; l j ) =

(
� 1; if l i = l j
1; otherwise:

(3)

Let L = f l1; l2; :::; l jSj g be a labeling of the supervertices.
The optimal labelingL � is determined by

L � = arg min
L

� X

i

 1(oi ; l i ) + 
X

i;j

 2(l i ; l j )
�

(4)

where is weight factor that is set to 0.5 in our implementation.
The optimization problem in (4) is solved using the method

in [47]. In our implementation, the number of labels was
initialized to the number of supervertices; each supervertex
was assigned to a different label. Fig. 2 (bottom) shows the
result of the MRF-based segmentation. More results of this
step are presented in Fig. 9.

6 SEGMENTATION REFINEMENT AND ANNOTA-
TION IN 3D
The automatic segmentation stage can produce over- and under-
segmented regions. To resolve these issues, we design three
operations:merge, extract, andsplit.

Merge. This operation is used to resolve over-segmentation.
In particular, users identify over-segmented regions that need
to be grouped by stroking on them. The merge operation is
illustrated in the �rst row of Fig. 3.

Extract. This operation is designed to handle under-
segmentation. In particular, for an under-segmented region,
the supervertices composing that region can be retrieved. Users
can select a few of those supervertices and use the merge
operation to group them to create a new region. The second
row of Fig. 3 shows the extract operation.

Split. In a few rare cases, the MRF-based segmentation
may perform differently on different regions. This is probably
because of the variation of the shape and appearance of objects.
For example, a scene may have chairs appearing in a unique
color and other chairs each of which composes multiple colors.
Therefore, a unique setting of the parameters in the MRF-based
segmentation may not adapt to all objects.

To address this issue, we design a split operation enabling
user-guided MRF-based segmentation. Speci�cally, users �rst

Merge

Extract

Split

Fig. 3. Segmentation re�nement operations. The leftmost and
rightmost images illustrate the segmentation before and after
applying operations. The center images illustrate the strokes. In
the second row, the cyan region (in the left) is under-segmented
and re�ned using Extract operation.

select an under-segmented region by stroking on that region.
The MRF-based segmentation is then invoked on the selected
region with a small value of (see (4)) to generate more
grained regions. We then enforce a constraint such that the
starting and ending point of the stroke belong to two different
labels. For example, assume thatl i and l j are the labels of
two supervertices that respectively contain the starting and
ending point of the stroke. To bias the objective function in (4),
 2(l i ; l j ) in (3) is set to� 1 whenl i 6= l j , and to a large value
(e.g.109) otherwise. By doing so, the optimization in (4) would
favor the casel i 6= l j . In other words, the supervertices at the
starting and ending point are driven to separate regions. Note
that the MRF-based segmentation is only re-executed on the
selected region. Therefore, the split operation is fast and does
not hinder user interaction. In particular, we have empirically
found that the split operation takes much less than a second to
process a single segment. We also note that the split operation
takes into account the regions users select to re-run the MRF
based optimization (with some implied prior) and hence would
be less cumbersome than manually selecting supervertices as
in the extract operation. The third row of Fig. 3 illustrates the
split operation.

As shown in our user study (see Appendix), users mostly
perform merge and extract operations. Split operation is only
used when extract operation is not able to handle severe under-
segmentations but such cases are not common in practice.
When all the 3D segmented regions have been re�ned, users
can annotate the regions by providing the object type. Fig. 4
shows an example of using our tool for annotation.

7 OBJECT SEARCH

There may exist multiple instances of an object class in a
scene, e.g. the nine chairs in Fig. 5. To support labeling and
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Fig. 4. Scene annotation using our tool. From left to right: 3D view, annotated labels, and 2D view.

(a) (b)

(c) (d)

Fig. 5. (a) 3D shape context descriptor. Left: the shape context of a point (in red) can be represented as the spatial distribution in
a sphere centered at that point. Right: a 2D view of the sphere. (b) The template (a chair) enclosed by a red box. Each remaining
chair consists of multiple regions. (c) The down-sampled point cloud has 20,000 points. (d) Result of the object search: matching
objects are found and enclosed by green boxes.

annotating repetitive objects, users can de�ne a template by
selecting an existing region or multiple regions composing
the template. Those regions are the results of the MRF-
based segmentation or user re�nement. Given the user-de�ned
template, our system automatically searches for objects that
are similar to the template. Note that each repetitive object
may be composed of multiple regions. For example, each chair
in Fig. 5(a) consists of different regions such as the back,
seat, legs. Once a group of regions is found to match well
with the template, the regions are merged into a single object
and recommended to users for veri�cation. This is because the
object search operation may propose inappropriate objects. Note
that the object search operation is applied only to unlabeled
regions. In our implementation, we extend the 2D shape context
proposed in [35] to describe 3D objects (section 7.1). Matching
objects with the template is performed via comparing shape
context descriptors (section 7.2). The object search is then
built upon the sliding-window object detection approach [48]
(section 7.3).

7.1 Shape Context

Shape context was proposed by Belongie et al. [35] as a
2D shape descriptor and is well-known for many desirable
properties such as being discriminative and robust to noise,
shape deformation and transformation, and partial occlusions.
Those properties �t our need well for several reasons. First,
reconstructed scene meshes could be incomplete and contain
noisy surfaces. Second, occlusions may also appear due to the
lack of suf�cient images completely covering objects. Third,
the tool is expected to adapt to the variation of object shapes,
e.g. chairs with and without arms.

In our work, a 3D object is represented by a setV of
vertices obtained from the 3D reconstruction step. For each
vertex v i 2 V , the shape context ofv i is denoted ass(v i )
and represented by the histogram of the relative locations
of other verticesv j , j 6= i , to v i . Let u ij = v i � v j . The
relative location of a vertexv j 2 V to v i is encoded by the
lengthku ij k and the spherical coordinate(�; � ) ij of u ij . In
our implementation, the lengthsku ij k were quantized into
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5 levels. To make the shape contexts(v i ) more sensitive to
local deformations,ku ij k were quantized in a log-scale space.
The spherical angles(�; � ) ij were quantized uniformly into 6
discrete values. Fig. 5(a) illustrates the 3D shape context.

The shape context descriptor is endowed with scale invari-
ance by normalizingku ij k by the mean of the lengths of all
vectors. To make the shape context rotation invariant, Kortgen
et al. [49] computed the spherical coordinates(�; � ) ij relative
to the eigenvectors of the covariance matrix of all vertices.
However, the eigenvectors may not be computed reliably for
shapes having no dominant orientations, e.g. rounded objects.
In addition, the eigenvectors are only informative when the
shape is complete while our scene meshes may be incomplete.
To overcome this issue, we establish a local coordinate frame
at each vertex on a shape using its normal and tangent vector.
The tangent vector of a vertexv i is the one connectingv i to
the centroid of the shape. We found that this approach worked
more reliably.

Since a reconstructed scene often contains millions of
vertices, prior to applying the object search, we uniformly
sample20; 000 points from the scene, which results in objects
of 100� 200 vertices.

7.2 Shape Matching

Comparing (matching) two given shapesV and Y is to
maximize the correspondences between pairs of vertices on
these two shapes, i.e. minimizing the deformation of the two
shapes in a point-wise fashion. We de�ne the deformation
cost between two verticesv i 2 V and y j 2 Y to be the
� 2(s(v i ); s(y j )) distance between the two corresponding shape
context descriptors extracted atv i andy j as follow,

� 2(s(v i ); s(y j )) =
1
2

dim( s(v i ))X

b=1

(s(v i )[b] � s(y j )[b])2

s(v i )[b] + s(y j )[b]
(5)

wheredim(s(v i )) is the dimension (i.e. the number of bins)
of s(v i ), ands(v i )[b] is the value ofs(v i ) at theb-th bin.

Given the deformation cost of every pair of vertices on
two shapesV andY, shape matching can be solved using the
shortest augmenting path algorithm [50]. To make the matching
algorithm adaptive to shapes with different number of vertices,
“dummy” vertices are added. This enables the matching method
to be robust to noisy data and partial occlusions. Formally,
the deformation costC(V; Y) between two shapesV andY is
computed as,

C(V; Y) =
X

v i 2 V̂

� 2(s(v i ); s(� (v i ))) (6)

where V̂ is identical toV or augmented fromV by adding
dummy vertices and� (v i ) 2 Ŷ is the matching vertex ofv i

determined by using [50].
To further improve the matching, we also consider how well

the two shapes correspond. In particular, we �rst alignV to
Y using a rigid transformation. This rigid transformation is
represented by a4� 4 matrix and estimated using the RANSAC
algorithm that randomly picks three pairs of correspondences
and determine the rotation and translation [51]. We then

compute an alignment error,

E (V; Y) = min
�

vu
u
t 1

jVj

jVjX

i =1

� (V )
i ;

vu
u
t 1

jYj

jYjX

i =1

� (Y )
i

�
(7)

where

� (V )
i =

(
k� (v i ) � T � v i k2 if � (v i ) exists forv i 2 V
� 2 otherwise

(8)
and, similarly for� (Y )

i , whereT is the rigid transformation
matrix and� is a large value used to penalize misalignments.

A match is con�rmed if: (i) C(V; Y) < � s and (ii)
E (V; Y) < � a where � s and � a are thresholds. In our
experiments, we set� = 2 (meters),� s = 0 :7, � a = 0 :4.
We found that the object search method was not too sensitive
to parameter settings, and that these settings achieved the best
performance.

7.3 Searching

Object search can be performed based on the sliding-window
approach [48]. Speci�cally, we take the 3D bounding box of
the template and use it as the window to scan a 3D scene.
At each location in the scene, all regions that intersect the
window are considered for their possibility to be part of a
matching object. However, it would be intractable to consider
every possible combination of all regions. To deal with this
issue, we propose a greedy algorithm that operates iteratively
by adding and removing regions.

The general idea is as follows. LetR be the set of regions
that intersect the windowW, i.e. the 3D bounding box of the
template. For a regionr 2 W nR , we verify whether the object
made byR [ f r g could be more similar to the user-de�ned
templateO in comparison withR. Similarly, for every region
r 2 R we also verify the object made byRnf r g. These adding
and removing steps are performed interchangeably in a small
number of iterations until the best matching result (i.e. a group
of regions) is found. This procedure is calledgrow-shrinkand
described in Algorithm 1.

In our implementation, the spatial strides on thex� , y� ,
and z� direction of the windowW were set to the size of
W. The number of iterations in Algorithm 1 was set to10,
which resulted in satisfactory accuracy and ef�ciency (see
Section 9.3).

Since a region may be contained in more than one window,
it may be veri�ed multiple times in multiple groups of regions.
To avoid this, if an object candidate is found in a window, its
regions will not be considered in any other objects and any
other windows. Fig. 5 illustrates the robustness of the object
search in localizing repetitive objects under severe conditions
(e.g. objects with incomplete shape).

The search procedure may miss some objects. To handle
such cases, we design an operation calledguided merge. In
particular, after de�ning the template, users simply select one of
the regions of a target object that is missed by the object search.
The grow-shrink procedure is then applied on the selected
region to seek a better match with the template. Fig. 6 shows
an example of the guided merge operation.
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function GrowShrink(R; W; O)
Input : R : set of regions to examine,

W: window,
O: user-de�ned template

Output : A : best matching object
begin

A  R
for i  1 to iterations do

// grow
M  A
for r 2 W n M do

if C(M [ f r g; O) < C (A ; O) and
E(M [ f r g; O) < � a then

A  M [ f r g
end

end
// shrink
M  A
for r 2 M do

if C(M n f r g; O) < C (A ; O) and
E(M n f r g; O) < � a then

A  M n f r g
end

end
end
return A

end
Algorithm 1: Grow-shrink procedure.C and E are the
matching cost and alignment error de�ned in (6) and (7).

(a) (b)

Fig. 6. Suppose that the right chair cannot be detected by the
object search. (a) Input: a template speci�ed by a stroke on
its regions and an initial region (marked by the arrow) of the
target object. (b) Output: labels of the target (the right chair) are
merged automatically by applying the grow-shrink procedure.

8 SEGMENTATION IN 2D

Segmentation in 2D can be done by projecting regions in 3D
space into 2D frames. However, the projected regions may
not align well with the true objects in 2D frames (see Fig. 7).
There are several reasons for this issue. For example, the depth
and color images used to reconstruct a scene might not be
exactly aligned at object boundaries, or the camera intrinsics
might be from factory settings and not well calibrated. We note
that manual calibration is not easy for novice users to perform.
Moreover, auto calibration might not work reliably especially
when scene features are lacking and camera registration during
reconstruction exhibits drift.

To overcome this issue, we propose an alignment algorithm

which aims to �t the boundaries of projected regions to true
boundaries in 2D frames. The true boundaries in a 2D frame
can be extracted using some edge detector (e.g. the Canny edge
detector [52]). Let E = f ej g denote the set of edge points
on the edge map of a 2D frame. LetU = f ui g be the set of
contour points of a projected object in that frame.U is then
ordered using the Moore neighbor tracing algorithm [53]. The
ordering step is used to express the contour alignment problem
in a form to which dynamic programming can be applied for
ef�cient implementation.

At each contour pointui , we consider a21� 21-pixel window
centered atui (in relative to a640� 480-pixel image). We
then extract the histogramhu i of the orientations of vectors
(ui ; uk ), uk 2 U in the window. The orientations are uniformly
quantized into 16 bins. We also perform this operation for
edge pointsej 2 E. The dissimilarity between the two local
shapes at a contour pointui and edge pointej is computed as
� 2(hu i ; hej ) (similarly to (5)).

We also consider the continuity and smoothness of contours.
In particular, the continuity between two adjacent pointsui

and ui � 1 is de�ned askui � ui � 1k. The smoothness of a
fragment including three consecutive pointsui , ui � 1, ui � 2 is
computed ascos(ui � ui � 1; ui � 2 � ui � 1) where ui � ui � 1

andui � 2 � ui � 1 denote the vectors connectingui � 1 to ui and
connectingui � 1 to ui � 2 respectively, andcos(�; �) is the cosine
of the angle formed by these two vectors.

Alignment of U to E is achieved by identifying a mapping
function f : U ! E that maps a contour pointui 2 U to an
edge pointej 2 E so as to,

minimize
� jU jX

i =1

� 2(hu i ; hf (u i ) )

+ � 1

jU jX

i =2

kf (ui ) � f (ui � 1)k

+ � 2

jU jX

i =3

cos(f (ui ) � f (ui � 1); f (ui � 2) � f (ui � 1))
�

(9)

The optimization problem in (9) can be considered as
the bipartite graph matching problem [50]. However, since
U is ordered, this optimization can be solved ef�ciently
using dynamic programming [54]. In particular, denoting
mi;j = � 2(hu i ; hej ), f i = f (ui ), f i;j = f (ui ) � f (uj ), the
objective function in (9) can be rewritten as,

F i =

8
>>><

>>>:

min j 2E fF i � 1 + mi;j + � 1kf i;i � 1k
+ � 2 cos(f i;i � 1; f i � 2;i � 1)g; if i > 2
min j 2E fF i � 1 + mi;j + � 1kf i;i � 1kg; if i = 2
min j 2E f mi;j g; if i = 1

(10)

where � 1 and � 2 are user parameters. Empirically, we set
� 1 = 0 :1 and � 2 = 3 :0 in all of our experiments.

To save the computational cost of (10), for each contour point
ui , we consider only itsk nearest edge points whose distance
to ui is less than a distance� set to10% of the maximum
of the image dimension, e.g.,� = 48 for a 640� 480-pixel
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(a) (b) (c)

Fig. 7. Segmentation of a 2D frame. (a) Segmentation by projecting objects from 3D into 2D. Projected regions are overlaid on the
RGB frame. (b) Contours of projected regions (in red) and Canny's edges (in black). (c) The correspondences between contour
points and edge points (green lines) obtained from the alignment algorithm. Note that only a few sampled points on the contours
are selected for illustration.

image. The number of nearest edge points (i.e.k) was set
to 30. Fig. 7(c) shows an example of contour alignment by
optimizing (10) using dynamic programming.

We have veri�ed the contribution of the continuity and
smoothness in Fig. 8. The results show that, when all the cues
are taken into account, the contours are mostly well aligned
with the true object boundaries. It is noticeable that the seat
of the green chair is not correctly recovered. We have found
that this is because the Canny detector missed important edges
on the boundaries of the chair. Recently, new edge detectors
(e.g. [55]) have been shown to work robustly under severe
illumination conditions and in the face of complex texture
changes. These edge detectors could be used to enhance the
alignment algorithm.

9 EXPERIMENTS

9.1 Dataset

We created a dataset consisting of over 100 scenes. The
dataset includes six scenes from publicly available datasets:
the copyroomand loungefrom the Stanford dataset [38], the
hotelanddormfrom the SUN3D [3], and thekitchenandof�ce
sequences from the Microsoft dataset [56]. The Stanford and
SUN3D dataset also provide registered RGB and depth image
pairs. These datasets also include the camera pose data.

In addition to existing scenes, we collected 100 scenes
using Asus Xtion and Microsoft Kinect v2. Our scenes were
captured from the campus of the University of Massachusetts
Boston and the Singapore University of Technology and Design.
These scenes were captured from various locations such as
lecturer rooms, theaters, university hall, library, computer labs,
dormitory, etc. There were about 1,600 object instances of 20
object categories. The objects vary in shape and color. Their
sizes also vary signi�cantly; some objects are quite small,
e.g. glasses (< 10cm), while others are very large, e.g. beds
(about 2m), walls (about 5m). All the scenes and objects were
fully segmented and annotated using our tool. The camera
pose information is also included. The dataset is available at
http://scenenn.net. Fig. 9 shows several of our collected scenes.

9.2 Evaluation of 3D Segmentation

We evaluated the impact of the graph-based and MRF-based
segmentation on our dataset. We considered the annotated
results obtained using our tool as the ground-truth. To measure
the segmentation performance, we extended the object-level
consistency error (OCE), the image segmentation evaluation
metric proposed in [57] to 3D vertices. Essentially, the OCE
re�ects the coincidence of pixels/vertices of segmented regions
and ground-truth regions. As indicated in [57], compared with
other segmentation evaluation metrics (e.g. the global and local
consistency error in [58]), the OCE considers both over- and
under-segmentation errors in a single measure. In addition,
OCE can quantify the accuracy of multi-object segmentation
and thus �ts our evaluation purpose well.

Table 1 summarizes the OCE of the graph-based and MRF-
based segmentation. As shown in the table, compared with
the graph-based segmentation, the segmentation accuracy is
signi�cantly improved by the MRF-based segmentation. It is
also noticeable that the number of supervertices and regions
yielded by the segmentation process is much smaller than the
number of 3D vertices that were passed in, making them
signi�cantly more convenient for the users to work with.
The OCE values presented in Table 1 show that automatic
segmentation is still not approaching the quality achieved by
human beings. Thus, user interactions are necessary. This is
for two reasons: �rst, both the graph-based and MRF-based
segmentation aim to segment a 3D scene into homogenous
regions rather than semantically-meaningful objects; second,
semantic segmentation is user-dependent and subjective [58].

After user interaction, the number of �nal labels is typically
less than a hundred. The number of objects is around 10 to
20 in most of the cases. Note that the numbers of �nal labels
and annotated objects are not identical. This is because there
could have been labels whose semantics is not well de�ned, e.g.
miscellaneous items on a table or some small labels appearing
as noise in the 3D reconstruction.

We also report the time required for the segmentation and
user interactions with the tool in Table 1. As shown in the
table, with the assistance of the tool, a complex 3D scene
(with millions of vertices) could be completely segmented and
annotated in less than 30 minutes, as opposed to approximately

http://scenenn.net
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Segmentation by projecting 3D objects into a 2D frame

Using the local shape only (i.e.� 1 = � 2 = 0 )

Using the local shape and continuity

Using the local shape and smoothness

Using the local shape, continuity, and smoothness

Fig. 8. Illustration of 2D segmentation. First column: segmentation result obtained by projection of 3D regions and overlaid on RGB
images. Remaining columns: close-ups of four regions marked in the segmentation result in the �rst column.
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Fig. 9. Results of our captured scenes. From left to right: the result of graph-based segmentation, MRF-based segmentation, and
�nal segmentation and annotation made by user interaction. Please refer to our supplemental document for the results of other
scenes.
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TABLE 1
Comparison of the graph-based segmentation and MRF-based segmentation. For our captured scenes, the statistical data is the
average numbers calculated over all the scenes. Note that for user re�ned results, the numbers of objects annotated are fewer

than the numbers of labels (i.e. segments). This is because the annotation was done only for objects that are common in practice.

Graph-based MRF-based User re�ned Interactive time

Scene #Vertices #Supervertices OCE Time #Regions OCE Time #Labels #Objects (minutes)
(seconds) (seconds)

copyroom 1,309,421 1,996 0.92 1.0 347 0.73 10.9 157 15 19
lounge 1,597,553 2,554 0.97 1.1 506 0.93 7.3 53 12 16
hotel 3,572,776 13,839 0.98 2.7 1433 0.88 17.8 96 21 27
dorm 1,823,483 3,276 0.97 1.2 363 0.78 7.8 75 10 15
kitchen 2,557,593 4,640 0.97 1.8 470 0.85 12.2 75 24 23
of�ce 2,349,679 4,026 0.97 1.7 422 0.84 10.9 69 19 24

Our scenes 1,450,748 2,498 0.93 1.4 481 0.77 12.1 179 19 30

a few hours to be done manually. Note that the interactive time
is subject to a user's experience. Several results of the tool are
shown in Fig. 9. We also compare our overall system with the
public version of SemanticPaint [21] in Fig. 10. Note that this
is only a qualitative comparison since different reconstruction
methods were used in two systems. Although SemanticPaint
offers real-time performance, it suffers from high frequency
noise due to the segment propagation mechanism. By contrast,
our system shows smoother segmentation results because it is
based on supervertices.

9.3 Evaluation of Object Search

To evaluate the object search, we collected a set of 45 objects
from our dataset. Those objects were selected so that they are
semantically-meaningful and their shapes are discriminative.
For example, drawers of cabinets were not selected since they
were present in �at surfaces which could be easily found in
many structures, e.g. walls, pictures, etc. For each scene and
each object class (e.g. chair), each object instance in the class
was used as the template while the object search was applied
to �nd the remaining objects of the same class.

We used the intersection over union (IoU) metric [13] to
determine true detections and false alarms. However, instead
of computing the IoU on object bounding boxes as in [13],
we computed the IoU at point-level. This is because our aim
is not only to localize repetitive objects but also to segment
them. In particular, an objectO (a set of vertices) formed by
the object search procedure is considered as true detection if
there exists an annotated objectR in the ground-truth such
that jO\Rj

jO[Rj > 0:5 wherej � j denotes the area.
The evaluation was performed on every template. The

precision, recall, andF -measure (= 2 � P recision � Recall
P recision + Recall ) were

then averaged over all evaluations. Table 2 shows the averaged
precision, recall, andF -measure of the object search. As shown,
the object search can localize 70% of repetitive objects with
69% precision and 65%F -measure. We have also tested the
object search without considering the alignment error, i.e.E
in (7). We have found that, compared with the solely use of
shape context dissimilarity score (i.e.C in (6)), while the
augmentation of alignment error could slightly incur a loss of
the detection rate (about 2%), it largely improved the precision
(from 22% to 69%). This led to a signi�cant increase of the
F -measure (from 30% to 65%).

Experimental results show that, the object search worked
ef�ciently with templates represented by about 200 points. For
example, the scene presented in Fig. 5 was completed within 15
seconds with a 150-point template and on a machine equipped
by an Intel(R) Core(TM) i7 2.10 GHz CPU and 32 GB of
memory. Note that threads can be used to run the object search
in the background while users are performing interactions.

TABLE 2
Performance of the proposed object search.

Precision Recall F -measure

Without alignment error 0.22 0.72 0.30
With alignment error 0.69 0.70 0.65

9.4 Evaluation of 2D Segmentation

We also evaluated the performance of the 2D segmentation
using the OCE metric. This experiment was conducted on
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the dorm sequence from the SUN3D dataset [3]. The dorm
sequence contained 58 images in which the ground-truth labels
were manually crafted and publicly available.

We report the segmentation performance obtained by pro-
jecting 3D regions into 2D images and by applying our
alignment algorithm in Table 3. The impact of the local shape,
continuity, and smoothness is also quanti�ed. As shown in
Table 3, the combination of the local shape, continuity, and
smoothness achieves the best performance. We have visually
found the alignment algorithm could make the projected
contours smoother and closer to the true edges.

Experimental results show our alignment algorithm worked
ef�ciently. On average, the alignment could be done in about
1 second for a640� 480-pixel frame.

TABLE 3
Comparison of different segmentation methods.

Segmentation method OCE

Projection 0.57
Local shape 0.60
Local shape + Continuity 0.55
Local shape + Smoothness 0.55
Local shape + Continuity + Smoothness0.54

10 CONCLUSION

This paper proposed a robust tool for segmentation and
annotation of 3D scenes. The tool couples 3D geometric infor-
mation and multi-view 2D RGB information in an interactive
framework. To enhance the usability of the tool, we developed
assistive, interactive operations that allow users to �exibly
manipulate scenes and objects in both 3D and 2D space. The
tool is also equipped with automated functionalities such as
scene and image segmentation, and object search.

Along with the tool, we created a dataset of more than 100
scenes. All the scenes were annotated using our tool. The
overall performance of the tool depends on the quality of
3D reconstruction. We are currently improving the quality of
3D meshes by recovering broken surfaces and missing object
parts. User interactions could provide valuable information for
many tasks, e.g. segmentation, annotation, and object search.
Enhancing the performance of these tasks based on learning
user interaction patterns (e.g. automatically learning templates
and parameters) will also be our future work.

APPENDIX

We have conducted a user study on the effectiveness of our
interactive operations (merge, split, extract, and undo). There
were 15 users involved in this study. The user study included
two tasks (A and B) designed to handle simple and complex
scenes. In task A, users were asked to segment a scene with
only a few chairs and a table in two minutes. In task B, users
were required to segment a complex bedroom scene containing
a signi�cant amount of furniture and many small objects in
ten minutes. All operations users performed were logged. The
statistics are shown in Fig. 11.

As can be seen, in both segmentation tasks, merge operation
dominates, followed by extract and split operation. While a
few users prefer split over extract (e.g. user 4, 6, 12, and 15
in task A; user 1 and 6 in task B), in such cases the number
of split operation is always very few compared to merge. Note
that our tool offers both �exibility in segmenting objects with
various sizes as well as ef�ciency in computation since small
segments for extract can be pre-computed.

In addition, task A also shows that merge is the most
straightforward operation for new users. Extract and split are
more useful when a scene gets more complex, with some coarse
segments spread over small objects.
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S. L. Hicks, P. Ṕerez, S. Izadi, and P. H. S. Torr, “The semantic paintbrush:
Interactive 3D mapping and recognition in large outdoor spaces,” inACM
Conference on Human Factors in Computing Systems, 2015.

[23] R. Guo and D. Hoiem, “Support surface prediction in indoor scenes,” in
IEEE International Conference on Computer Vision, 2013.

[24] Z. Jia, A. C. Gallagher, A. Saxena, and T. Chen, “3D-based reasoning
with blocks, support, and stability,” inIEEE International Conference
on Computer Vision and Pattern Recognition, 2013.

[25] D. Lin, S. Fidler, and R. Urtasun, “Holistic scene understanding for 3D
object detection with RGBD cameras,” inIEEE International Conference
on Computer Vision, 2013.

[26] B. Kim, P. Kohli, and S. Savarese, “3D scene understanding by voxel-
CRF,” in IEEE International Conference on Computer Vision, 2013.

[27] Y. S. Wong, H. K. Chu, and N. J. Mitra, “Smartannotator: An interactive
tool for annotating RGBD indoor images,”Computer Graphics Forum,
vol. 34, no. 2, 2015.

[28] Y. Wang, R. Ji, and S. F. Chang, “Label propagation from imagenet to
3D point clouds,” inIEEE International Conference on Computer Vision
and Pattern Recognition, 2013.

[29] Y. M. Kim, N. J. Mitra, D. M. Yan, and L. Guibas, “Acquiring 3D
indoor environments with variability and repetition,”ACM Transactions
on Graphics (TOG), vol. 31, no. 6, 2012.

[30] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and
A. J. Davison, “SLAM++: Simultaneous localisation and mapping at the
level of objects,” inIEEE International Conference on Computer Vision
and Pattern Recognition, 2013.

[31] L. Nan, K. Xie, and A. Sharf, “A search-classify approach for cluttered
indoor scene understanding,”ACM Transactions on Graphics (TOG),
vol. 31, no. 6, 2012.

[32] T. Shao, W. Xu, K. Zhou, J. Wang, D. Li, and B. Guo, “An interactive
approach to semantic modeling of indoor scenes with an RGBD camera,”
ACM Transactions on Graphics (TOG), vol. 31, no. 6, 2012.

[33] K. Chen, Y. K. Lai, Y. X. Wu, R. Martin, and S. M. Hu, “Automatic
semantic modeling of indoor scenes from low-quality RGB-D data using
contextual information,”ACM Transactions on Graphics (TOG), vol. 33,
no. 6, 2014.

[34] Y. Zhang, W. Xu, Y. Tong, and K. Zhou, “Online structure analysis for
real-time indoor scene reconstruction,”ACM Transactions on Graphics,
2015.

[35] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object
recognition using shape contexts,”IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 4, pp. 509–522, 2002.



14

[36] K. Tateno, F. Tombari, and N. Navab, “Real-time and scalable incremental
segmentation on dense SLAM,” inIEEE/RSJ International Conference
on Intelligent Robots and Systems, 2015.

[37] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” inIEEE
International Symposium on Mixed and Augmented Reality, 2011.

[38] Q. Y. Zhou and V. Koltun, “Dense scene reconstruction with points of
interest,”ACM Transactions on Graphics (TOG), vol. 32, no. 4, 2013.

[39] N. Fioraio, J. Taylor, A. W. Fitzgibbon, L. D. Stefano, and S. Izadi,
“Large-scale and drift-free surface reconstruction using online subvolume
registration,” inIEEE International Conference on Computer Vision and
Pattern Recognition, 2015.

[40] A. Dai, M. Nießner, M. Zoll̈ofer, S. Izadi, and C. Theobalt, “Bundlefusion:
Real-time globally consistent 3d reconstruction using on-the-�y surface
re-integration,”ACM Transactions on Graphics 2017 (TOG), 2017.

[41] O. Kähler, V. A. Prisacariu, and D. W. Murray, “Real-time large-scale
dense 3D reconstruction with loop closure,” inEuropean Conference on
Computer Vision, 2016.

[42] W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D
surface construction algorithm,”ACM Transactions on Graphics, vol. 21,
no. 4, pp. 163–169, 1987.

[43] P. Felzenszwalb and D. P. Huttenlocher, “Ef�cient graph-based image
segmentation,”International Journal of Computer Vision, vol. 59, no. 2,
pp. 167–181, 2004.

[44] J. Shi and J. Malik, “Normalized cuts and image segmentation,”IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[45] A. Karpathy, S. D. Miller, and F. F. Li, “Object discovery in 3D scenes
via shape analysis,” inIEEE International Conference on Robotics and
Automation, 2013, pp. 2088–2095.

[46] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk,
“Slic superpixels compared to state-of-the-art superpixel methods,”IEEE
Transactions on Pattern Analysis and Machince Intelligence, vol. 34,
no. 11, pp. 2274–2282, 2012.

[47] S. A. Barker and P. J. W. Rayner, “Unsupervised image segmentation
using markov random �eld models,”Pattern Recognition, vol. 33, no. 4,
pp. 587–602, 2000.

[48] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” inIEEE International Conference on Computer Vision and
Pattern Recognition, 2005, pp. 886–893.
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